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ABSTRACT 

 

The cell cycle of budding yeast is the succession of events that lead to reproduction 

of daughter cells and are tightly regulated. In this project, we study a much 

simplified model of cell cycle progression by Tang Chao and corroborate dynamic 

properties of the model, such as stability and robustness, with time course gene 

expression data. The regulation of yeast cell cycle clock is mainly based on the 

transcriptional regulation of cell cycle genes which are controlled by nine known 

transcription factors. Expression data are used to analyze the profiles of cell cycle 

genes. Fourier transform method is applied to sort genes according to their 

expression peak time. Furthermore, by combining expression time course data with 

Gerstein’s regulatory network, we find three TF_orf clusters that function in 

different cell cycle stages. 

 

 

Keywords: cell cycle, gene expression, regulation, transcription factor, regulatory 

network 
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Chapter 1 

Introduction  

1.1 Yeast Biology 

Budding Yeast, Saccharomyces cerevisiae, has been studied experimentally as 

a model organism of biology since the 1930’s. Its complete genomic sequence was 

published in 1996, the first among eukaryotic organisms. The genome of 

Saccharomyces cerevisiae is divided up into 16 chromosomes, ranging from 220 kb to 

2200 kb, with a total genome size of approximately 12,000kb. 6,183 open reading 

frames (ORFs) on the genome have been identified, most of which are believed to 

encode specific proteins.  

           Saccharomyces cerevisiae is a unicellular organism which, unlike more 

complex eukaryotes, can grow on defined media, giving the investigator complete 

control of environmental parameters. Moreover, since there are substantial cellular 

functions which are highly conserved from yeast to mammals, sequence information 

obtained in the yeast genome project is extremely useful as a reference against the 

sequences of human, animal or plant genes. The unique properties of the yeast 

Saccharomyces cerevisiae, among some 700 yeast species and its enormous hidden 

potential which has been exploited for many thousands of years, made it a preferred 

organism for research.  
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1.2 Introduction to Yeast Cell Cycle 

      A yeast cell receives a wide variety of cellular and environmental signals, which 

are often processed to generate specific genetic response. Here, we explore the 

molecular and genetic machinery of yeast cell cycle control which forms a highly 

independent system and is known in great detail.  

      The cell cycle is the succession of events whereby a cell grows and divides into 

two daughter cells that each contains the information and machinery necessary to 

repeat the process. The basic function of the yeast cell cycle is like other eukaryotic 

cells which is to duplicate accurately the vast amount of DNA in the chromosomes 

and then segregate the two copies precisely into mother cell and daughter cell. These 

processes define two major phases of the yeast cell cycle – S phase and M phase. Bud 

emergence and DNA duplication occur during S phase(S for synthesis). After S phase, 

DNA is segregated into mother cell and daughter cell (mitosis). When DNA has been 

partitioned, the cell undergoes cell division (cytokinesis), separating mother cell from 

the daughter cell. These two events occur in M phase. Besides these two major events, 

the cell requires much time to grow and double their mass of proteins and organelles. 

After S phase, replicated DNA is checked for its genetic integrity to ensure there is no 

damage during replication, otherwise the cell cycle is halted for DNA reparation. 

Hence, extra gap phases are inserted into the cell cycle – G2 between S phase and M 

phase; while G1 between M phase and next S phase. Thus, the cell cycle is divided 

into four sequential phases: G1, S, G2, M.  

      Basic biology on yeast and its cell cycle are covered in most textbooks: 

Biochemistry (Mathews et al 2000), Molecular Biology of the cell cycle (Alberts et al 

2002) and Gene VIII (Lewin 2003). The online databases contain publications and 

comprehensive information on yeast: SGD (http://www.yeastgenome.org/), SMD 
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(http://genome-www5.stanford.edu/), CYGD (http://mips.gsf.de/proj/yeast/CYGD/db/) 

and KEGG (http://www.genome.jp/kegg/). 

 

1.3 Objectives 

      Yeast cell cycle is tightly regulated for proper functioning at proper time. The cell 

cycle control system guarantees the stability and robustness when cell goes through 

cell cycle progression. In the present project, Prof. Tang Chao’s dynamic model is 

employed and further implemented to demonstrate the global dynamic properties and 

stabilities of cell cycle network. Our aim is to understand how the command system, 

which is basically a controlled program of gene expression, is designed to regulate the 

cell cycle. Beyond this much simplified model that focuses on the cell-cycle 

progression, we wish to dig deeper into the genetic construction of regulatory circuit 

and the ensuing dynamics. For this purpose, we examine the expression pattern of the 

792 known cell cycle genes from time course measurement. By clustering into phase-

synchronized groups, we hope to decipher details of their regulatory program, 

including on-off switch by single or multiple TFs, and the associated dynamic process 

of TF binding or activation. 
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Chapter 2 

Yeast Cell Cycle Control 

2.1 Yeast Cell Cycle is Tightly Regulated 

          For many years, cell biologist watched the puppet show of DNA synthesis, 

mitosis and cytokinesis but had no idea of what lay behind the curtain controlling 

these events. The cell cycle control system was simply a black box inside the cell. 

 

The cell cycle control system possesses the following features. 

i. A clock, or timer, that turns on each event at a specific time, and 

provide a relatively fixed amount of time for the completion of each 

event; 

ii. A mechanism for initiating events in correct order; for example, entry 

into mitosis must always come after DNA replication 

iii. A mechanism to ensure that each event is triggered only once per cycle; 

for example, the DNA cannot be replicated twice during a single cell 

cycle 

iv. Binary (on/off) switch that trigger events in a complete, irreversible 

fashion; It would be a disaster, if events like nuclear envelope 

breakdown were initiated but not completed. 

v. Robustness, backup mechanism to ensure that the cycle can process 

smoothly even when parts of the systems malfunction 

vi. Adaptability. So that the system’s behavior can be modified to suit 

specific environmental conditions. 
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        What makes up the control system to regulate the cell cycle clock? A lot of 

surveys and studies have been done by biologists, showing that the control system is 

mainly based on a family of protein kinase knows as CDK (cyclin-dependent kinase), 

and gene regulation. In budding yeast cell cycle, there is only one CDK – Cdc28 (C 

Wittenberg, 2005; Mart Loog and David O. Morgan, 2005; Alberghina et al, 2004). 

         Much is known about Cdc28 activities and its functions (). Cdc28 associates 

successively with different cyclins which is also proteins (Cln1,2,3,4; Clb1,2,5,6) to 

trigger the different events of the cycle, and its activity is usually terminated by cyclin 

degradation or inhibitory phophorylation (Nash et al., 1988). The activity of the 

Cdc28 rises and falls as cell progress through the cycle and the oscillations lead 

directly to cyclical change activation of certain proteins that initiate the major events 

of the cell cycle, for example an increase in Clb2/Cdc28 activity at the beginning of 

mitosis leads to increased activation of proteins that control chromosome 

condensation, nuclear envelope breakdown and spindle assembly.  Others like 

Cln2/Cdc28 is responsible for DNA replication and Clb5/Cdc28 is responsible for bud 

emergence (Tyers et al., 1993; Schwob and Nasmyth, 1993). 

          The cell cycle control obviously depends on protein-protein interactions, which 

is also referred to as post-transcriptional mechanism. However, transcriptional 

regulation provides another level of control which is more fundamental. The genes 

peak in different phase during cell cycle are responsible for synthesis of cell cycle 

specific proteins. Some cyclin levels, for example, are controlled through cyclin gene 

transcription, since the genes mainly code for proteins.  
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2.2 Yeast Cell Cycle Dynamic Model 

             How do physicists study cell cycle regulatory process? As they first studied 

the hydrogen atom before coming into the more complex atoms, physicists first 

focused on the yeast cell cycle with the most simplified network. Prof. Tang Chao 

developed a simple dynamic model with just a few nodes to investigate the global 

dynamic properties and stabilities of cell cycle network (Li 2004). Fig 2.1 shows the 

proteins and their interactions (in the sense of information flow) in Chao's network. 

                                          

Fig 2.1: Chao’s network 

           This regulatory network includes cell size check point and 3 classes of proteins: 

cyclin, which bind to the kinase Cdc28; the inhibitors, degraders, and competitors of 

the cyclin/Cdc28 complexes (Sic1, Cdh1, Cdc20, Cdc14) and transcription factors 

(SBF, MBF, Mcm1/SFF, Swi5). Green arrows represent positive regulations. For 

example, when the cell grows large enough, the Cln3/Cdc28 will be activated, which 

in turn activates a pair of transcription factor groups, SBF and MBF to activate the 

genes of the cyclins Cln1,2 and Clb5,6, respectively. Red arrows represent negative 

regulaton (inhibition, repression, or degradation). For example, the protein Sic1 can 

bind to the Clb/Cdc28 complex to inhibit its function, Clb1,2 phosphorylate Swi5 to 

prevent its entry into the nucleus, whereas Cdh1 targets Clb1,2 for degradation. 
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Yellow loops are add to represent ‘self-degradation’ to those nodes that are not 

negatively regulated by others. The degradation is modeled as a time-delayed 

interaction: if a protein with a self yellow arrow is active at time t (Si(t) =1) and if its 

total input is zero from time t to t+1, it will be degraded at time t+1, i.e., (Si=0). Since 

much of the biology seems to be reflected in the on–off characteristics of the network 

components, the nodes and arrows can be treated as logic-like operations in this 

simplified dynamic network. Hence, each node i has only two states, Si=1 and Si=0, 

representing the active and the inactive state of the protein, respectively, with totally 

11 nodes in the network. The protein states in the next time step are determined by the 

protein states in the present time step via the following rule: 

 

where aij=1 for a green arrow from protein j to protein i and aij =1 for a red arrow 

from j to i.  
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Fixed Points 

          We implemented the dynamic model to study the time evolution of the protein 

states. Following Tang Chao’s work, we start from each of the 2,048 initial states in 

the 11-node network. We find that all of the initial states eventually flow into one of 

the seven stationary states (fixed points) shown in Table 2.1. There is one big fixed 

point attracting 1,764 states among the seven fixed points. This super stable state is 

the biological G1 stationary state. The advantage for a cell’s stationary state to be a 

big attractor of the network is obvious: the stability of the cell state is guaranteed 

since under normal conditions the cell will be sitting at this fixed point, waiting for 

the signal for another round of division. 

 

Table 2.1: Fixed points of cell-cycle network 

Biological Pathway 

             Next, we start the cell-cycle process with the cell size signal, and observe that 

the system starts from G1 and goes back to the G1 stationary state. The temporal 

evolution of the protein states indeed follows the cell-cycle sequence, shown in Table 

2.2. This is the biological trajectory or pathway of the cell-cycle network which 

represents the cell cycle progression 

.  

 

Basin size Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1 
1,764 0 0 0 0 1 0 0 0 1 0 0 
151 0 0 1 1 0 0 0 0 0 0 0 
109 0 1 0 0 1 0 0 0 1 0 0 
9 0 0 0 0 0 0 0 0 1 0 0 
7 0 1 0 0 0 0 0 0 1 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 1 0 0 0 0 0 0 
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Time Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1 Phase 
1 1 0 0 0 1 0 0 0 1 0 0 Start 
2 0 1 1 0 1 0 0 0 1 0 0 G1 
3 0 1 1 1 1 0 0 0 1 0 0 G1 
4 0 1 1 1 0 0 0 0 0 0 0 G1 
5 0 1 1 1 0 0 0 1 0 0 0 S 
6 0 1 1 1 0 0 0 1 0 1 1 G2 
7 0 0 0 1 0 0 1 1 0 1 1 M 
8 0 0 0 0 0 1 1 0 0 1 1 M 
9 0 0 0 0 0 1 1 0 1 1 1 M 
10 0 0 0 0 0 1 1 0 1 0 1 M 
11 0 0 0 0 1 1 1 0 1 0 0 M 
12 0 0 0 0 1 1 0 0 1 0 0 G1 
13 0 0 0 0 1 0 0 0 1 0 0 Stationary G1 

Table 2.2: Time evolution of cell-cycle pathway 

         Newborn daughter cells grow to a critical size to have enough Cln3 to activate 

the transcription factors, MBF and SBF, which transcriptional activate two classes of 

cyclins, Cln1,2 and Clb5,6. Cln2 is primarily responsible for bud emergence and Clb5 

for initiating DNA synthesis. Clb5-dependent kinase activity is not immediately 

evident because the G1-phase cell is full of cyclin-dependent kinase inhibitors (Sic1). 

After the Sic1 is phosphorylated by Cln2/Cdc28 for degradation, Clb5/Cdc28 is 

released to do its job.  

          Another class of cyclin, Clb2, are out of the picture in G1 because their 

transcription factor, Mcm1, is inactive, their degradation pathway, Cdh1/APC, is 

active, and their stoichiometric inhibitors, Sic1, are abundant. Cln2- and Clb5-

dependent kinases remove Sic1 and inactivate Cdh1. Clb2 is then allowed to appear. 

Moreover, Clb2/Cdc28 soon activates its own transcription factor, Mcm1, which in 

turn further drive its synthesis.  

      Clb2/Cdc28 turns off SBF and MBF. As Clb2/Cdc28 drives the cell into 

mitosis, it also sets the stage for exit from mitosis by stimulating the synthesis of 



 19

Cdc20 which is transcriptional regulated by Mcm1. Then, Cdc20 promotes the 

activation of Cdc14. Cdc20&Cdc14 play several roles in mitotic exit. First, they 

degrades Clb5,6 and Clb1,2, remove their potency on Cdh1 inactivation. Next, they 

activate Cdh1, stabilizing Sic1, and activate Swi5 (the transcription factor for Sic1). 

As Clb2-kinase activity is quenched by Cdh1 and by Sic1 to below a threshold value, 

a signal for exit from mitosis is triggered, the cell divides and returns to G1 phase. 

         To investigate the dynamical stability of cell cycle pathway, Li et al (Li, 2004) 

analyzed the dynamic trajectories of all 1,764 protein states that will flow to the G1 

fixed point, shown in Fig 2.2. The cell cycle pathway is colored in blue and so is the 

node representing the G1 stationary state. The dynamic flow of the protein states is 

convergent onto the biological pathway, making the pathway an attracting trajectory 

of the dynamics. With such a topological structure, the cell-cycle pathway is a very 

stable trajectory; it is very unlikely for a sequence of events, starting at the beginning 

(or at any other point) of the cell-cycle process, to deviate from the cell-cycle pathway.  
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Fig 2.2: Dynamic trajectory of 1,764 protein states 

            From Li et al (Li 2004), the yeast cell-cycle network is robustly designed. 

Furthermore, since the network is only a skeleton of a larger cell-cycle network with 

many ‘‘redundant’’ components and interactions, the complete network is expected to 

be even more stable. 
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Chapter 3 

Gene Expression and Transcriptional Regulatory 

Network 

3.1 Gene Expression 

           Regulation of the cell cycle clock is mainly effected through a controlled 

program of gene expression (Paul T. Spellman, et al, 1998). In budding yeast, there 

are about 800 cell cycle genes, oscillating during the cell cycle. Some of these genes 

encode proteins with known cell-cycle functions, such as cell cycle control, cell wall 

biogenesis, DNA replication and so on, but most are unknown.    

           One set of gene expression time course data of cell cycle category was 

collected from Stanford Microarray Database (http://genome-www5.stanford.edu). 

The expression ratio was measured under the specific condition that yeast cells were 

blocked in mitosis using a cdc15-2 temperature sensitive mutant at restrictive 

temperature which is in order to synchronize the sample cells. The mutant can prevent 

the release of CDC14 which will further activate CDH1. Hence, the cells are arrested 

in 10th time step of Tang Chao’s cell cycle pathway. The culture was then shifted to 

permissive temperature (25oC), and released into the cell cycle. The cell cycle then 

starts at M/G1. Samples were then taken every 10 mins (some are taken every 20 mins) 

during the course of over two full cell cycles, 290 mins (Table3.1). Then, we collected 

798 cell cycle genes with some of predicted phases according to Richard Young’s 

work in MIT (http://web.wi.mit.edu/young/cellcycle/). After the combination of 

Richard Young’s cell cycle genes with those involved in the time course data, we 

finally have a data set of 792 cell cycle genes.  
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Time point Sample taken time 
1 cdc15 010 min 
2 cdc15 030 min 
3 cdc15 050 min 
4 cdc15 070 min 
5 cdc15 080 min 
6 cdc15 090 min 
7 cdc15 100 min 
8 cdc15 110 min 
9 cdc15 120 min 
10 cdc15 130 min 
11 cdc15 140 min 
12 cdc15 150 min 
13 cdc15 160 min 
14 cdc15 170 min 
15 cdc15 180 min 
16 cdc15 190 min 
17 cdc15 200 min 
18 cdc15 210 min 
19 cdc15 220 min 
20 cdc15 230 min 
21 cdc15 240 min 
22 cdc15 250 min 
23 cdc15 270 min 
24 cdc15 290 min 

 

Table 3.1 Time elapsed after escape from cdc15 arrest 

              In order to standardize and analyze the data set, we normalized the gene 

expression data so that the average log2(ratio) over the course of the experiment is 

equal to 0 and were further divided by the standard deviation. Fig 3.1 shows the raw 

data set using color coding of the gene expression value during the yeast cell cycle. 

Genes correspond to rows, and the time points of the experiment are the columns. 

Yellow color means positive regulation, while blue color means negative regulation.  
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Fig 3.1: Raw data of all cell cycle genes 

          Hardly any information can be extracted from the above figure, because the 

genes are disorderly placed along the Y axis. In order to test if these data is good and 

whether we can see some periodic patterns that are expected, we applied Fourier 

Transform to analyze the data. We calculated Fourier Transform magnitudes for each 

gene in terms of different values of omega.  

Im= ∑sin(ωtj)x(tj)            (1) 

   Re = ∑cos(ωtj)x(tj)          (2) 

              I = A2 + B2                       (3) 

   Φ= tan-1(Im/Re)        (4) 

           Since the cell cycle period usually varies from 90mins to120mins. The test 

omega value is taken as 2*pi/90. Fig 3.2 shows the distribution of Fourier transform 

magnitudes, with omega ranging from 0.4*test to 1.5*test and we can easily see that 

time points
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most genes peak at either position 4 or position 5, which is 115 min and 125 min 

respectively. Thus the periodical property of these genes under this condition is quite 

similar. We also found that Fourier Transform magnitudes are unstable for small 

variations of omega, so the magnitudes were averaged as well as phase over 115 to 

125 mins with 1 min each step to get both magnitudes and phase of each gene.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2: Fourier transform magnitudes distribution 

           The genes are then sorted according to their magnitudes which are their 

fluctuation strength, and further sorted in terms of their phase (time of peak 

expression). Fig 3.3 shows results of sorting the strongest 50, 100, 200, 400, 600 and 

all cell cycle genes respectively.  
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Fig 3.3: Expression of sorted genes (50,100,200,400,600,792) 

 

           

 

time points time points 

time points time points 

time points time points 
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          Fig 3.3 shows clearly the periodic patterns of cell cycle genes. These genes are 

regulated in a periodic manner coincident with the cell cycle. Such gene regulation is 

required for proper functioning of the control mechanism to maintain events’ order 

through cell cycle. For example, the occurrence of 50 genes of strongest oscillation 

obeys the cell cycle sequence, though the boundary is not absolute, shown in Table 

3.1 and Fig 3.4. 

Orf Phase Orf Phase Orf Phase 

YPL187W  m/g1   YJL078C   g1   YBR009C   s  

YJL159W  m/g1   YJL115W   g1   YDR224C   s  

YKL185W  m/g1   YPL267W   g1   YBR010W   s  

YKL164C  m/g1   YBL035C   g1   YBL003C   s  

YKL163W  m/g1   YLR286C   g1   YMR003W   s/g2  

YDR261C  s   YDR097C   g1   YML052W   g2/m  

YOR307C  g1   YGR189C   g1   YHL028W   g2/m  

YLR079W  m/g1   YIL066C   g1   YPR149W   g2/m  

YKR077W  g1   YBR088C   g1   YMR032W   g2/m  

YBR158W  m/g1   YDL003W   g1   YLR190W   g2/m  

YOR308C  g1   YHR143W   g1   YBR038W   g2/m  

YNL327W  m/g1   YAR007C   g1   YBR092C   g2/m  

YBR108W  g1   YBR089W   g1   YDR033W   g2/m  

YLR049C  g1   YOL090W   g1   YDR225W   s  

YGL028C  g1   YPL256C   g1   YBR054W   g2/m  

YGR044C  g1   YOL007C   g1   YNL160W   m/g1  

YCL024W  g1   YNL030W   s      
 

Table 3.2: 50 strongest oscillating genes 
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Fig 3.4: Polar distribution of 50 strongest oscillating genes 

 Besides the differences among their peak expression time, genes may have 

distinct duration of activation. Some genes are turned on for a short period and then 

turned off again, while others are turned on for a longer period. This may be related to 

their functionality. For example, genes responsible for cell wall biosynthesis and 

integrity should be active during the course of mitosis (YHL028C) while others 

required for cell cycle check points only need to function over a short period of time 

(YCL024W), shown in Fig 3.5. 

 

Fig 3.5: Genes’ activation durations are related to their functions 

g1 m/g1

s 

g2/m
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 The experiment as mentioned previously starts at late M phase and then the cell 

enters G1 very quickly. The literature review of yeast cell cycle elucidates G1 and M 

phases both generally take up about 1/3 cell cycle time, while S phase takes up over 

1/2 of the remaining time (Dien BS, Srienc F, 1991). Since time duration of the cell 

cycle in this experiment is around 120 mins, we can assign each time point with a 

hypothetic phase description, i.e. 0 mins to 10 mins – M, 10 mins to 50 mins – G1, 50 

mins to 80 mins – S, 80 mins to 90 mins – G2 and 90 mins to 120 mins – M, as shown 

in Table 3.3. Gene expression is further plotted along with the hypothetical phase 

description of first round of cell cycle in Fig 3.6. The result is supported by the 50 

genes that have the strongest oscillations, as shown in Fig 3.4. The time for peak 

expression of m/g1, g1, s and g2/m genes is 5 mins to 20 mins,  20 mins to 40 mins, 

50 mins to 60 mins and 90 mins to 110 mins reapectively. 

Time point Sample taken time 
Hypothetical 

Phase 
1 cdc15 010 min M 
2 cdc15 030 min G1 
3 cdc15 050 min G1 
4 cdc15 070 min S 
5 cdc15 080 min S 
6 cdc15 090 min G2 
7 cdc15 100 min M 
8 cdc15 110 min M 
9 cdc15 120 min M 
10 cdc15 130 min M 
11 cdc15 140 min G1 
12 cdc15 150 min G1 
13 cdc15 160 min G1 
14 cdc15 170 min G1 
15 cdc15 180 min S 
16 cdc15 190 min S 
17 cdc15 200 min S 
18 cdc15 210 min G2 
19 cdc15 220 min M 
20 cdc15 230 min M 
21 cdc15 240 min M 
22 cdc15 250 min M 
23 cdc15 270 min G1 
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24 cdc15 290 min G1 
 

Table 3.3 Cell cycle progression time with phase description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.6: Hypothetic phase description  

First round of cell cycle progression 

time points

G1 M S G2 M
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2.2 Transcriptional Regulatory Network 

           Gene activation and repression events are initiated by a special class of 

proteins known as transcription factors (TF) which bind to short DNA sequence 

(known as binding motifs or TF binding sites) upstream the transcription start site of a 

given gene. The collection of TF’s and their target ORF’s forms a transcriptional 

regulatory network that constructs the backbone of the genetic regulatory program for 

all cellular process. The yeast cell cycle gene expression program can be viewed as 

outcome of such a program in action. Nine known cell cycle transcriptional factors are 

involved, each regulating a group of genes and functioning during one stage of cell 

cycle. Furthermore, these nine transcription factors are divided into three groups, as 

illustrated in Fig 3.7. Mbp1, Swi4 and Swi6 control the late G1 genes. Mcm1, Fkh2 

(or Fkh1) and Ndd1 control the transcription of G2/M genes. Mcm1 is also involved 

in the transcription of genes at the end of m and early G1 together with Swi5 and 

Ace2 (Itamar Simon, et al, 2001). 

                             

Fig 3.7: Groups of transcription factors function in different cell cycle stages 
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           In 2004, a genome-scale transcriptional regulatory network, involving 7074 

regulatory interactions between 142 transcription factors and 3420 target genes, was 

developed by Mark Gerstein his collaborators (Nicholas M. Luscombe, et al, 2004), 

one of the most complete so far. 409 out of 792 cell cycle genes were extracted from 

the network and drawn into three sub-networks using Pajek (http://vlado.fmf.uni-

lj.si/pub/networks/pajek/). Fig 3.8 to Fig 3.10 show sub-networks correspond to G1/S, 

G2/M and M/G1 transitions, with big green nodes and red nodes representing the 

transcription factors and target genes respectively. The arrows indicate the direction 

of information flow. Yellow nodes were added to indicate regulators of the 

transcription factors. 

 

 
 
 

Fig 3.8: G1/S sub-network 
 (TF: Mbp1(YDL056W), Swi4(YER111C) and Swi6(YLR182W)) 
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Fig 3.9: G2/M sub-network 
 (TF: Fkh2(YNL068C), Ndd1(YOR372C) and Mcm1(YMR043W)) 

 
 

 
 

Fig 3.10: M/G1 sub-network 
 (TF: Mcm1(YMR043W), Swi5(YDR146C) and Ace2(YLR131C)) 
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2.3 Cluster 

            Not all of the interactions between transcription factors and genes contained in 

the Gerstein’s network have been experimental verified. Therefore, comparing the 

regulating network with time course micro-array data will not only serve to confirm 

the proposed genetic interactions, but also yield information on the execution of the 

regulatory program in a dynamic context. 

2.3.1 G1/S Cluster 

 

Fig 3.11: Expression of genes in G1/S sub-network  

The cluster of gene 47 to 90 is clearly visible 

            Fig 3.11 shows gene expression controlled by G1/S transcription factors 

according to Gerstein’s work. From the phase sorted expression pattern, we find that 

gene 47 to 90, form a synchronized cluster and hence are good candidate for targets of 

the three G1/S transcription factors alone. The other genes behavior differently could 

time points
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be corregulated by other transcription factors. Checked with Richard Young’s cell 

cycle phase description, genes in this cluster are almost exclusively ‘g1’ genes, while 

the others are categorized into ‘s’, ‘g2/m’ or ‘m/g1’. To verify our guess, we searched 

the binding motifs of several genes (http://jura.wi.mit.edu/fraenkel/regcode/).  

            Fig 3.12 shows the binding motifs of ‘YJL158C’ (No12 gene in Fig 3.11) 

YHR061C (No13 gene in Fig 3.11) and ‘YNR044W’ (No45 gene in Fig 3.11) that 

have different oscillation properties from the ‘cluster’. The result indicates that 

‘YJL158C’ seems to have no binding site in the promoter region. ‘YHR061C’ has two 

binding sites for fkh2 that function in next stage G2/M. ‘YNR044W’ could not be 

regulated by G1/S transcription factors at all. 

 

Fig 3.12_A: YJL158C 
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Fig 3.12_B: YHR061C 

 

Fig 3.12_C: YNR044W 

 

          Fig 3.13 shows the binding motifs of ‘YBR071W’ (No49 gene in Fig 3.11), 

‘YJL073W’ (No61 gene in Fig 3.11) and ‘YDL003W’ (No80 gene in Fig 3.11) in the 

‘cluster’. All have at least one binding site for G1/S transcription factors. 

 

 

Fig 3.13_A: YBR071W 
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Fig 3.13_B: YJL073W 

 

Fig 3.13_C: YDL003W 

          We have checked against the binding data for all the genes in Fig 3.11 when 

available. The sample genes shown here are representative of the situation for the 

majority of genes in this group. Their functional annotation is given in table 3.4.   

ORF 
No ORF 

Young’s 
phase Annotation 

47  YNL273W   g1   TOF1     topoisomerase I interacting factor 1  
48  YOR315W   g2/m  N/A 
49  YBR071W   g1  N/A 
50  YDL127W   g1   PCL2     cyclin, G1/S-specific  

51  YDL102W   g1  
 CDC2     DNA-directed DNA polymerase delta, catalytic 125 KD 

subunit  
52  YJR030C   g1  N/A 
53  YMR179W   g1   SPT21     required for normal transcription at a number of loci  
54  YAR008W   g1   SEN34     tRNA splicing endonuclease gamma subunit  
55  YGR109C   g1   CLB6     cyclin, B-type  
56  YDR309C   g1   GIC2     Cdc42 GTPase-binding protein  
57  YGR041W   g1   BUD9     budding protein  
58  YGL038C   g1   OCH1     alpha-1,6-mannosyltransferase  
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59  YBR070C   g1   SAT2     osmotolerance protein  
60  YDR279W   g1  N/A 
61  YJL073W   g1  N/A 
62  YNL289W   g1   PCL1     cyclin, G1/S-specific  

63  YKL045W   g1  
 PRI2     DNA-directed DNA polymerase alpha , 58 KD subunit 

(DNA primase)  
64  YPL267W   g1  N/A 
65  YGR221C   g1   TOS2     Target of SBF, localizes to the bud neck and bud tip  
66  YGR153W   g1  N/A 
67  YLR286C   g1   CTS1     endochitinase  
68  YOR248W   g1  N/A 
69  YDR097C   g1   MSH6     DNA mismatch repair protein  
70  YOR075W   g1   UFE1     syntaxin (T-SNARE) of the ER  
71  YGR152C   g1   RSR1     GTP-binding protein  
72  YDR528W   g1  N/A 

73  YGR189C   g1  
 CRH1     family of putative glycosidases might exert a common 

role in cell wall organization  

74  YML100W   g1  
 TSL1     alpha,alpha-trehalose-phosphate synthase, 123 KD 

subunit  
75  YHR149C   g1   SKG6     similarity to hypothetical protein YGR221c  
76  YPR120C   g1   CLB5     cyclin, B-type  

77  YNL231C   g1  
 PDR16     protein involved in lipid biosynthesis and multidrug 

resistance  

78  YDR501W   g1  
 PLM2     PLasmid Maintenance mutant shows 2mu-m plasmid 

instability  
79  YOL019W   g1  N/A 
80  YDL003W   g1   MCD1     Mitotic Chromosome Determinant  
81  YGR151C   g1  N/A 
82  YAR007C   g1   RFA1     DNA replication factor A, 69 KD subunit  

83  YLR103C   g1  
 CDC45     required for minichromosome maintenance and 

initiation of chromosomal DNA replication  
84  YDL018C   g1  N/A 
85  YER095W   g1   RAD51     DNA repair protein  
86  YJL074C   g1   SMC3     required for structural maintenance of chromosomes  
87  YCR065W   g1   HCM1     transcription factor  
88  YNL102W   g1   POL1     DNA-directed DNA polymerase alpha, 180 KD subunit 
89  YPL256C   g1   CLN2     cyclin, G1/S-specific  
90  YDL101C   g1   DUN1     protein kinase  

 

Table 3.4: G1/S Cluster (Gene 47 to 90 in Fig 3.9) 

           In conclusion, the G1/S cluster contains 44 genes. The well studied G1 cyclin 

genes Clb5,6 and Cln2 are included as well as budding protein BUD9. Others with 

similar behavior in the experiment were added to form a cluster of G1/S coregulated 

genes. 
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2.3.2 G2/M 

 

Fig 3.14: Expression of genes in G2/M sub-network  

The cluster of gene 17 to 56 is clearly visible 

         Fig 3.14 shows gene expression controlled by G2/M transcription factors 

according to Gerstein’s work. Similarly, we believe that gene 17 to 56 is within the 

same cluster that is most possibly controlled by M/G1 transcription factors. We also 

checked with Richard Young’s cell cycle phase description and genes in the ‘cluster’ 

are almost ‘g2/m’ genes, while the others do not have such a regulation. However, 

there seems to be a small cluster between gene 70 and 90 regulated by Mcm1 in M/G1.  
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ORF 
No ORF 

Young’s 
phase Annotation 

17  YML064C   g2/m   TEM1     GTP-binding protein of the RAS superfamily  
18  YDR150W   s/g2   NUM1     nuclear migration protein  
19  YPL111W   g2/m   CAR1     arginase  
20  YOR247W   g1  N/A 
21  YPL155C   s/g2   KIP2     kinesin-related protein  

22  YBR133C   s/g2  
 HSL7     adapter in a regulatory pathway that relieves tyrosine 

phosphorylation of Cdc28  
23  YIL158W   g2/m  N/A 
24  YGL255W   g2/m   ZRT1     Zinc transporter I  
25  YNL192W   m/g1   CHS1     chitin synthase I  
26  YMR001C   g2/m   CDC5     protein kinase, involved in regulation of DNA replication 
27  YML052W   g2/m  N/A 
28  YLR131C   g2/m   ACE2     metallothionein expression activator  
29  YHL028W   g2/m   WSC4     Cell wall integrity and stress response component 4  
30  YGR108W   g2/m   CLB1     cyclin, G2/M-specific  
31  YAL053W   g1  N/A 
32  YKL096W-A   s/g2   CWP2     cell wall mannoprotein  
33  YPL141C   s/g2  N/A 
34  YOR025W   g2/m   HST3     silencing protein  
35  YMR144W   s  N/A 
36  YLR084C   g2/m  N/A 
37  YDR146C   g2/m   SWI5     transcription factor  
38  YMR002W   s/g2  N/A 
39  YBR138C   g2/m   HDR1     High-Dosage Reductional segregation defective  
40  YPR149W   g2/m   NCE102     involved in non-classical protein export pathway  
41  YPR119W   g2/m   CLB2     cyclin, G2/M-specific  
42  YGL008C   g2/m   PMA1     H+-transporting P-type ATPase  
43  YOR129C   g2/m  N/A 

44  YLR190W   g2/m  
 MMR1     protein localized to bud sites and tips, mother-bud 

junction  
45  YCR024C-A   g2/m   PMP1     H+-ATPase subunit, plasma membrane  
46  YHR151C   g2/m  N/A 
47  YGL162W   g2/m   SUT1     hypoxic protein involved in sterol uptake  
48  YNL172W   g2/m   APC1     subunit of anaphase-promoting complex (cyclosome)  

49  YOR023C   g2/m  
 AHC1     component of the ADA histone acetyltransferase 

complex  
50  YNL056W   g2/m  N/A 
51  YJR092W   g2/m   BUD4     budding protein  

52  YDL048C   g2/m  
 STP4     involved in pre-tRNA splicing and in uptake of 

branched-chain amino acids  
53  YBR038W   g2/m   CHS2     chitin synthase II  
54  YER070W   g1   RNR1     ribonucleoside-diphosphate reductase, large subunit  
55  YBR092C   g2/m   PHO3     constitutive acid phosphatase precursor  
56  YMR253C   g2/m  N/A 

 

Table 3.5: G2/M Cluster (Gene 17 to 56 in Fig 3.13) 
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          In conclusion, the G2/M cluster contains 40 genes. The well studied G2/M 

cyclin genes Clb1,2 are involved and others with similar behavior in the experiment 

were added to form a cluster of G2/M coregulated genes. 

 

2.3.3 M/G1 

 

Fig 3.15: Expression of genes in M/G1 sub-network  

The cluster of gene 43 to 90 is clearly visible 

 

          Fig 3.15 shows gene expression controlled by M/G1 transcription factors 

according to Gerstein’s work. Similarly, we believe that gene 43 to 90 is within the 

same cluster that is most possibly controlled by M/G1 transcription factors. We also 

checked with Richard Young’s cell cycle phase description. Genes in the ‘cluster’ are 

almost exclusively ‘m/g1’ or ‘g1’ genes, while the others do not have such a 

time points
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regulation. However, there also seems to be a small cluster between gene 20 and 30 

which is regulated by Mcm1 in G2/M.  

 

ORF 
No ORF 

Young’s 
phase Annotation 

43  YJL194W   m/g1  N/A 

44  YKL178C   m/g1  
 MMR1     protein localized to bud sites and tips, mother-bud 

junction  
45  YOR066W   m/g1   PMP1     H+-ATPase subunit, plasma membrane  
46  YLR274W   m/g1  N/A 
47  YPL187W   m/g1   SUT1     hypoxic protein involved in sterol uptake  
48  YBR202W   g2/m   APC1     subunit of anaphase-promoting complex (cyclosome)  

49  YLR273C   m/g1  
 AHC1     component of the ADA histone acetyltransferase 

complex  
50  YJL159W   m/g1  N/A 
51  YJL196C   m/g1   BUD4     budding protein  

52  YKL185W   m/g1  
 STP4     involved in pre-tRNA splicing and in uptake of branched-

chain amino acids  
53  YKL164C   m/g1   CHS2     chitin synthase II  
54  YNL328C   m/g1   RNR1     ribonucleoside-diphosphate reductase, large subunit  
55  YPL158C   m/g1   PHO3     constitutive acid phosphatase precursor  
56  YIL009W   m/g1  N/A 
57  YKL163W   m/g1   PDS5     precocious dissociation of sister chromatids  
58  YGR234W   m/g1   CDC20     cell division control protein  
59  YDR055W   m/g1   MRH1     membrane protein related to Hsp30p  
60  YNR044W   m/g1   IAH1     isoamyl acetate hydrolytic enzyme  
61  YEL040W   m/g1  N/A 
62  YER189W   g1   STE2     pheromone alpha-factor receptor  
63  YFL064C   g1   KIN3     ser/thr protein kinase  
64  YER152C   g1   AGA2     a-agglutinin binding subunit  
65  YLR079W   m/g1   DBF2     ser/thr protein kinase related to Dbf20p  
66  YGR086C   m/g1   MFA2     mating pheromone a-factor 2  
67  YEL077C   g1   BNS1     Bypasses Need for Spo12p  
68  YBR158W   m/g1   RGA1     RHO-type GTPase-activating protein for Cdc42p  
69  YER190W   g1   SPO12     sporulation protein  
70  YKL151C   m/g1   SWI4     transcription factor  
71  YOR315W   g2/m   CLN3     cyclin, G1/S-specific  
72  YNL327W   m/g1   CDC6     cell division control protein  
73  YGL089C   g1   STE3     pheromone a-factor receptor  
74  YDL127W   g1  N/A 
75  YPL283C   m/g1   CDC46     cell division control protein  
76  YLR049C   g1   MF(ALPHA)1     mating pheromone alpha-1 precursor  
77  YGR296W   g1   CDC47     cell division control protein  
78  YGL028C   g1   PIG1     putative type 1 phosphatase regulatory subunit  
79  YLR194C   m/g1   HSP150     member of the Pir1p/Hsp150p/Pir3p family  
80  YGR044C   g1   ELO1     fatty acid elongation protein  
81  YGR041W   g1   PIR1     required for tolerance to heat shock  
82  YJL157C   g2/m   CLN1     cyclin, G1/S-specific  
83  YJL051W   g2/m   KEL2     involved in cell fusion and morphogenesis  
84  YJL078C   g1   PIR3     member of the Pir1p/Pir2p/Pir3p family  
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85  YNL289W   g1   EXG2     exo-beta-1,3-glucanase minor isoform  
86  YLR286C   g1  N/A 
87  YDR528W   g1  N/A 
88  YGR189C   g1   AGA1     a-agglutinin anchor subunit  
89  YDR461W   g1   UTR2     cell wall protein  

 

Table 3.6: M/G1 Cluster (Gene 43 to 90 in Fig 3.14) 

 

          In conclusion, the M/G1 cluster contains 48 genes. Cdc20, Cdc6 and Cln3 are 

involved where Cdc20 and Cdc6 trigger the exit from mitosis and Cln3 is the cell 

cycle signal for cell cycle division. Others with similar behavior in the experiment 

were added to form a cluster of M/G1 coregulated genes. 

          These clusters provide a foundation for understanding the transcriptional 

mechanism of cell cycle regulation. Fig 3.16 shows the entire cluster-gram of the 

transcription factor target genes. The corresponding network is shown in Fig 3.17. 

As discussed previously, these identified corregulated genes share common binding 

sites. Presumably the genes within the same group somehow have related functions. 

The 44 G1/S cluster genes include CLN2, CLB5,6, CDC2, PRI2, SEN34, RFA1, 

CDC45 and many other genes involved in DNA replication. Many genes known to be 

involved in mitosis is found in G2/M cluster which contains 40 genes, such as CDC5, 

CLB1,2, SWI5, APC1 and BUD4. The G2/M cluster which contains 48 genes 

includes 4 cell division control proteins CDC20, CDC6, CDC46 and CDC47.  
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Fig 3.16: the clusters of cell cycle stage specific TF_orf groups 

 

 

Fig 3.17: Simplified cell cycle TF_ orf network 

time points
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Chapter 4 

Achievements and Further Work 

           The purpose of the present project is to study the regulatory program of yeast 

cell cycle. Implementation of Prof. Tang Chao’s model gives us a good demonstration 

of cell cycle’s robustness and stability. By digging into gene expression program and 

further grouping the genes into phase synchronized clusters, we confirmed the 

proposed genetic interactions.  

          Even though the cell cycle regulatory proteins are few and their roles well-

characterized, the execution of the dynamic program is rather complex and many of 

the details are yet to be understood. In the thesis, we have only examined the gene 

expression data from one time course experiment. With more data under various 

experimental conditions, along with good binding data, one may overcome some of 

the intrinsic issues with noise and obtain a more complete picture of cell cycle gene 

regulation. Furthermore, beyond the static interactions between the transcription 

factors and target genes, we would like to understand in more detail the turning on/off 

process of a given gene by one or more transcription factors, and how such processes 

at the single gene level are fine tuned to meet the global demands of cell growth, 

replication, and division. 
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Appendix -- C programming code for cell cycle model 
implementation 
//   Implementation of Chao's model used to investigate the fixed points and biological pathway 
under various dynamic rules 
// Andy Cai 
// 11/2004 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
 
void main() 
{  
 int option, option1, option2, option3; 
 int Sn[] = {0,0,0,0,0,0,0,0,0,0,0}; 
 int So[] = {0,0,0,0,0,0,0,0,0,0,0}; 
 int Temp[] = {0,0,0,0,0,0,0,0,0,0,0}; 
 int Sum[] = {0,0,0,0,0,0,0,0,0,0,0};  
 int S[] =  {0,0,0,0,0,0,0,0,0,0,0}; 
 int Selfdeg[] = {1,1,1,1,1}; 
 int Basinsize[] = {0,0,0,0,0,1,0}; 
 int i, j, count, firstentry; 
 int Ag, Ar, td; 
 int timeinterval; 
 
 int PF1[] = {0,0,0,0,1,0,0,0,1,0,0}; 
 int PF2[] = {0,0,1,1,0,0,0,0,0,0,0}; 
 int PF3[] = {0,1,0,0,1,0,0,0,1,0,0}; 
 int PF4[] = {0,0,0,0,0,0,0,0,1,0,0}; 
 int PF5[] = {0,1,0,0,0,0,0,0,1,0,0}; 
 int PF6[] = {0,0,0,0,0,0,0,0,0,0,0}; 
 int PF7[] = {0,0,0,0,1,0,0,0,0,0,0}; 
 
 printf("To investigate the trajectories in state space; please enter 1. \n"); 
 printf("To do statistics of the big fixed points of the cell-cycle network; please enter 2. \n"); 
 printf("To quit the program; please enter 3. \n"); 
 printf("Please select one option: "); 
 scanf("%d", &option); 
 
 while(option != 3) 
 { 
  for(i=0;i<=10;i++) 
  { 
   Sn[i] = So[i] = Temp[i] = Sum[i] = S[i] = 0; 
  } 
 
  for(i=0;i<=4;i++) 
  { 
   Selfdeg[i] = 1; 
  } 
 
  for(i=0;i<=6;i++) 
  { 
   Basinsize[i] = 0; 
   Basinsize[5] = 1; 
  } 
 
  if (option == 1) 
  { 
   printf("\nBack to main list, please enter 0; to continue, please press 1: "); 
   scanf("%d", &option1); 
 
   while(option1 != 0) 
   { 
    for(i=0;i<=10;i++) 
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    { 
     Sn[i] = So[i] = Temp[i] = Sum[i] = S[i] = 0; 
    } 
 
    printf("\nPlease assign values for Ag, Ar and td(Note: The value of 
Ar must larger or equal to that of Ag). \n"); 
     scanf("%d%d%d", &Ag, &Ar, &td); 
 
     printf("Ag = %d\t Ar = %d\t td = %d\n", Ag, Ar, td); 
     
     for(i=0;i<=10;i++) 
     { 
      Sum[i] = 0;  
     } 
 
     for(i=0;i<=4;i++) 
     { 
      Selfdeg[i] = 1; 
     } 
 
    firstentry = 1; 
    printf("\nPlease assign state statuses for 11 nodes(1 for activated 
node; 0 for deactivated node), Cln3, MBF, SBF, Cln1,2, Cdh1, Swi5, Cdc20&Cdc14, Clb5,6, Sic1, 
Clb1,2 and Mcm1&SFF: \n"); 
    scanf("%d%d%d%d%d%d%d%d%d%d%d", &So[0], &So[1], &So[2], 
&So[3], &So[4], &So[5], &So[6], &So[7], &So[8], &So[9], &So[10]); 
    
   
 printf("Cln3\tMBF\tSBF\tCln1,2\tCdh1\tSwi5\tCdc20&Cdc14\tClb5,6\tSic1\tClb1,2\tMcm1&SFF 
\n"); 
    printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\n", So[0], 
So[1], So[2], So[3], So[4], So[5], So[6], So[7], So[8], So[9], So[10]); 
    
    timeinterval = 0; 
 
    while(timeinterval!=td) 
     { 
     for(i=0;i<=10;i++) 
     { 
      Sum[i] = 0; 
     } 
 
     if (firstentry == 1) 
     { 
      for(i=0;i<=10;i++) 
      { 
       Sn[i] = So[i]; 
      } 
      firstentry = 0; 
     }   
 
     if (Sn[0] == 1)//self-degradation 
     { 
      Sum[1] = Sum[1] + Ag; 
      Sum[2] = Sum[2] + Ag; 
 
      if(Selfdeg[0] == td) 
       Sum[0] = -1; 
      else Selfdeg[0]++; 
     } 
 
     if (Sn[1] == 1) 
     { 
      Sum[7] = Sum[7] + Ag; 
     } 
 
     if (Sn[2] == 1) 
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     { 
      Sum[3] = Sum[3] + Ag; 
     } 
 
     if (Sn[3] == 1)//self=degradation 
     { 
      if (Sn[2] == 0) 
      { 
       Sum[4] = Sum[4] - Ar; 
       Sum[8] = Sum[8] - Ar; 
 
       if(Selfdeg[1] == td) 
        Sum[3] = -1; 
       else Selfdeg[1]++; 
      } 
 
      else if(Sn[2] == 1) 
      { 
       Sum[4] = Sum[4] - Ar; 
       Sum[8] = Sum[8] - Ar; 
       Selfdeg[1] = 1; 
      } 
     } 
 
     if (Sn[4] == 1) 
     {  
      Sum[9] = Sum[9] - Ar; 
     } 
 
     if (Sn[5] == 1)//self-degradation 
     { 
      if (Sn[6] + Sn[10] - Sn[9] == 0) 
      { 
       Sum[8] = Sum[8] + Ag; 
 
       if(Selfdeg[2] == td) 
        Sum[5] = -1; 
       else Selfdeg[2]++; 
      } 
 
      else if(Sn[6] + Sn[10] - Sn[9] > 0) 
      { 
       Sum[8] = Sum[8] + Ag; 
       Selfdeg[2] = 1; 
      } 
     } 
 
     if (Sn[6] == 1)//self-degradation 
     { 
      if (Sn[9] + Sn[10] == 0) 
      { 
       Sum[4] = Sum[4] + Ag; 
       Sum[5] = Sum[5] + Ag; 
       Sum[8] = Sum[8] + Ag; 
       Sum[7] = Sum[7] - Ar; 
       Sum[9] = Sum[9] - Ar; 
 
       if(Selfdeg[3] == td) 
        Sum[6] = -1; 
       else Selfdeg[3]++; 
      } 
 
      else if (Sn[9] + Sn[10] > 0) 
      { 
       Sum[4] = Sum[4] + Ag; 
       Sum[5] = Sum[5] + Ag; 
       Sum[8] = Sum[8] + Ag; 
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       Sum[7] = Sum[7] - Ar; 
       Sum[9] = Sum[9] - Ar; 
       Selfdeg[3] = 1; 
      } 
     } 
 
     if (Sn[7] == 1) 
     { 
      Sum[9] = Sum[9] + Ag; 
      Sum[10] = Sum[10] + Ag; 
      Sum[4] = Sum[4] - Ar; 
      Sum[8] = Sum[8] - Ar; 
     } 
 
     if (Sn[8] == 1) 
     { 
      Sum[7] = Sum[7] - Ar; 
      Sum[9] = Sum[9] - Ar; 
     } 
 
     if (Sn[9] == 1) 
     { 
      Sum[6] = Sum[6] + Ag; 
      Sum[10] = Sum[10] + Ag; 
      Sum[1] = Sum[1] - Ar; 
      Sum[2] = Sum[2] - Ar; 
      Sum[4] = Sum[4] - Ar; 
      Sum[5] = Sum[5] - Ar; 
      Sum[8] = Sum[8] - Ar; 
     } 
 
     if (Sn[10] == 1)//self-degradation 
     { 
      if (Sn[9] == 0) 
      { 
       Sum[5] = Sum[5] + Ag; 
       Sum[6] = Sum[6] + Ag; 
       Sum[9] = Sum[9] + Ag; 
       if(Selfdeg[4] == td) 
        Sum[10] = -1; 
       else Selfdeg[4]++; 
      } 
 
      else if(Sn[9] == 1) 
      { 
       Sum[5] = Sum[5] + Ag; 
       Sum[6] = Sum[6] + Ag; 
       Sum[9] = Sum[9] + Ag; 
      } 
     } 
     //update the value for status conditions for all nodes 
 
     for(i=0;i<=10;i++) 
      { 
       Temp[i] = Sn[i]; 
      }//Store the old statuses in a Temp array 
 
     for(i=0;i<=10;i++) 
      { 
       So[i] = Temp[i]; 
      }//update the old statuses for 11 nodes 
 
     for(i=0;i<=10;i++) 
     { 
      if (Sum[i] > 0) 
       Sn[i] = 1; 
      else if (Sum[i] < 0) 
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       Sn[i] = 0; 
      else Sn[i] = So[i]; 
     }//The new statuses of all 11 nodes 
 
     if(Sn[0] == So[0] && Sn[1] == So[1] && Sn[2] == So[2] && 
Sn[3] == So[3] && Sn[4] == So[4] && Sn[5] == So[5] && Sn[6] == So[6] && Sn[7] == So[7] && Sn[8] == 
So[8] && Sn[9] == So[9] && Sn[10] == So[10])   
     { 
      timeinterval++; 
     } 
 
     else timeinterval = 0; 
   
     printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\n", 
Sn[0], Sn[1], Sn[2], Sn[3], Sn[4], Sn[5], Sn[6], Sn[7], Sn[8], Sn[9], Sn[10]); 
       
    }//end of while loop for the fixed point 
 
   printf("\nBack to main list, please enter 0; to continue, please press 1: "); 
   scanf("%d", &option1); 
   }//end of the while loop for option1 
    
  }//case for option 1  
 
  else if (option == 2) 
  { 
   printf("\nBack to main list, please enter 0; to continue, please press 1: "); 
   scanf("%d", &option2); 
 
   while(option2 != 0) 
   { 
    for(i=0;i<=10;i++) 
    { 
    Sn[i] = So[i] = Temp[i] = Sum[i] = S[i] = 0; 
    } 
 
    for(i=0;i<=4;i++) 
    { 
     Selfdeg[i] = 1; 
    } 
 
    for(i=0;i<=6;i++) 
    { 
     Basinsize[i] = 0; 
     Basinsize[5] = 1; 
    } 
 
    printf("\nTo do statistics with default dynamic rule settings, please 
enter 1. \n"); 
    printf("To do statistics with other dynamics rule settings, please 
enter 2. \n"); 
    printf("Please make a choice: "); 
    scanf("%d", &option3); 
 
    if (option3 == 1) 
    { 
     for(count=1;count<=2048;count++) 
     { 
      for(j=0;j<=10;j++) 
      { 
       if((count%(int)pow(2,j+1))<(int)pow(2,j)) 
        Sn[j] = 0; 
       else 
if((count%(int)pow(2,j+1))>=(int)pow(2,j)) 
        Sn[j] = 1; 
      } 
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     while(Sn[0] != So[0] || Sn[1] != So[1] || Sn[2] != So[2] || 
Sn[3] != So[3] || Sn[4] != So[4] || Sn[5] != So[5] || Sn[6] != So[6] || Sn[7] != So[7] || Sn[8] != So[8] || 
Sn[9] != So[9] || Sn[10] != So[10]) 
     { 
      for(i=0;i<=10;i++) 
      { 
       Sum[i] = 0; 
      } 
 
      if (firstentry == 1) 
      { 
       for(i=0;i<=10;i++) 
       { 
        Sn[i] = So[i]; 
       } 
       firstentry = 0; 
      }   
 
      if (Sn[0] == 1)//self-degradation 
      { 
       Sum[1] = Sum[1] + 1; 
       Sum[2] = Sum[2] + 1; 
       Sum[0] = -1; 
      } 
 
      if (Sn[1] == 1) 
      { 
       Sum[7] = Sum[7] + 1; 
      } 
 
      if (Sn[2] == 1) 
      { 
       Sum[3] = Sum[3] + 1; 
      } 
 
      if (Sn[3] == 1)//self=degradation 
      { 
       if (Sn[2] == 0) 
       { 
        Sum[4] = Sum[4] - 1; 
        Sum[8] = Sum[8] - 1; 
        Sum[3] = -1; 
       } 
  
       else if(Sn[2] == 1) 
       { 
        Sum[4] = Sum[4] - 1; 
        Sum[8] = Sum[8] - 1; 
       } 
      } 
 
      if (Sn[4] == 1) 
      {  
       Sum[9] = Sum[9] - 1; 
      } 
  
      if (Sn[5] == 1)//self-degradation 
      { 
       if (Sn[6] + Sn[10] - Sn[9] == 0) 
       { 
        Sum[8] = Sum[8] + 1; 
        Sum[5] = -1; 
       } 
  
       else if(Sn[6] + Sn[10] - Sn[9] > 0) 
       { 
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        Sum[8] = Sum[8] + 1; 
       } 
      } 
  
      if (Sn[6] == 1)//self-degradation 
      { 
       if (Sn[9] + Sn[10] == 0) 
       { 
        Sum[4] = Sum[4] + 1; 
        Sum[5] = Sum[5] + 1; 
        Sum[8] = Sum[8] + 1; 
        Sum[7] = Sum[7] - 1; 
        Sum[9] = Sum[9] - 1; 
        Sum[6] = -1; 
       } 
 
       else if (Sn[9] + Sn[10] > 0) 
       { 
        Sum[4] = Sum[4] + 1; 
        Sum[5] = Sum[5] + 1; 
        Sum[8] = Sum[8] + 1; 
        Sum[7] = Sum[7] - 1; 
        Sum[9] = Sum[9] - 1; 
       } 
      } 
  
      if (Sn[7] == 1) 
      { 
       Sum[9] = Sum[9] + 1; 
       Sum[10] = Sum[10] + 1; 
       Sum[4] = Sum[4] - 1; 
       Sum[8] = Sum[8] - 1; 
      } 
 
      if (Sn[8] == 1) 
      { 
       Sum[7] = Sum[7] - 1; 
       Sum[9] = Sum[9] - 1; 
      } 
 
      if (Sn[9] == 1) 
      { 
       Sum[6] = Sum[6] + 1; 
       Sum[10] = Sum[10] + 1; 
       Sum[1] = Sum[1] - 1; 
       Sum[2] = Sum[2] - 1; 
       Sum[4] = Sum[4] - 1; 
       Sum[5] = Sum[5] - 1; 
       Sum[8] = Sum[8] - 1; 
      } 
 
      if (Sn[10] == 1)//self-degradation 
      { 
       if (Sn[9] == 0) 
       { 
        Sum[5] = Sum[5] + 1; 
        Sum[6] = Sum[6] + 1; 
        Sum[9] = Sum[9] + 1; 
        Sum[10] = -1; 
       } 
  
       else if(Sn[9] == 1) 
       { 
        Sum[5] = Sum[5] + 1; 
        Sum[6] = Sum[6] + 1; 
        Sum[9] = Sum[9] + 1; 
       } 
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      } 
      //update the value for status conditions for all 
nodes 
 
      for(i=0;i<=10;i++) 
       { 
        Temp[i] = Sn[i]; 
       }//Store the old statuses in a Temp array 
 
      for(i=0;i<=10;i++) 
       { 
        So[i] = Temp[i]; 
       }//update the old statuses for 11 nodes 
 
      for(i=0;i<=10;i++) 
      { 
       if (Sum[i] > 0) 
        Sn[i] = 1; 
       else if (Sum[i] < 0) 
        Sn[i] = 0; 
       else Sn[i] = So[i]; 
      }//The new statuses of all 11 nodes 
 
      
      if(Sn[0] == So[0] && Sn[1] == So[1] && Sn[2] == 
So[2] && Sn[3] == So[3] && Sn[4] == So[4] && Sn[5] == So[5] && Sn[6] == So[6] && Sn[7] == So[7] && 
Sn[8] == So[8] && Sn[9] == So[9] && Sn[10] == So[10]) 
       { 
        if(Sn[0] == PF1[0] && Sn[1] == 
PF1[1] && Sn[2] == PF1[2] && Sn[3] == PF1[3] && Sn[4] == PF1[4] && Sn[5] == PF1[5] && Sn[6] == 
PF1[6] && Sn[7] == PF1[7] && Sn[8] == PF1[8] && Sn[9] == PF1[9] && Sn[10] == PF1[10]) 
         Basinsize[0]++; 
        else if(Sn[0] == PF2[0] && Sn[1] 
== PF2[1] && Sn[2] == PF2[2] && Sn[3] == PF2[3] && Sn[4] == PF2[4] && Sn[5] == PF2[5] && Sn[6] == 
PF2[6] && Sn[7] == PF2[7] && Sn[8] == PF2[8] && Sn[9] == PF2[9] && Sn[10] == PF2[10]) 
         Basinsize[1]++; 
        else if(Sn[0] == PF3[0] && Sn[1] 
== PF3[1] && Sn[2] == PF3[2] && Sn[3] == PF3[3] && Sn[4] == PF3[4] && Sn[5] == PF3[5] && Sn[6] == 
PF3[6] && Sn[7] == PF3[7] && Sn[8] == PF3[8] && Sn[9] == PF3[9] && Sn[10] == PF3[10]) 
         Basinsize[2]++; 
        else if(Sn[0] == PF4[0] && Sn[1] 
== PF4[1] && Sn[2] == PF4[2] && Sn[3] == PF4[3] && Sn[4] == PF4[4] && Sn[5] == PF4[5] && Sn[6] == 
PF4[6] && Sn[7] == PF4[7] && Sn[8] == PF4[8] && Sn[9] == PF4[9] && Sn[10] == PF4[10]) 
         Basinsize[3]++; 
        else if(Sn[0] == PF5[0] && Sn[1] 
== PF5[1] && Sn[2] == PF5[2] && Sn[3] == PF5[3] && Sn[4] == PF5[4] && Sn[5] == PF5[5] && Sn[6] == 
PF5[6] && Sn[7] == PF5[7] && Sn[8] == PF5[8] && Sn[9] == PF5[9] && Sn[10] == PF5[10]) 
         Basinsize[4]++; 
        else if(Sn[0] == PF6[0] && Sn[1] 
== PF6[1] && Sn[2] == PF6[2] && Sn[3] == PF6[3] && Sn[4] == PF6[4] && Sn[5] == PF6[5] && Sn[6] == 
PF6[6] && Sn[7] == PF6[7] && Sn[8] == PF6[8] && Sn[9] == PF6[9] && Sn[10] == PF6[10]) 
         Basinsize[5]++; 
        else if(Sn[0] == PF7[0] && Sn[1] 
== PF7[1] && Sn[2] == PF7[2] && Sn[3] == PF7[3] && Sn[4] == PF7[4] && Sn[5] == PF7[5] && Sn[6] == 
PF7[6] && Sn[7] == PF7[7] && Sn[8] == PF7[8] && Sn[9] == PF7[9] && Sn[10] == PF7[10]) 
         Basinsize[6]++; 
       } 
 
      }//end of while loop for the fixed point 
 
     } 
    
 printf("Cln3\tMBF\tSBF\tCln1,2\tCdh1\tSwi5\tCdc20&Cdc14\tClb5,6\tSic1\tClb1,2\tMcm1&SFF\t
Basinsize \n"); 
    
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF1[0], PF1[1], PF1[2], 
PF1[3], PF1[4], PF1[5], PF1[6], PF1[7], PF1[8], PF1[9], PF1[10], Basinsize[0]); 
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 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF2[0], PF2[1], PF2[2], 
PF2[3], PF2[4], PF2[5], PF2[6], PF2[7], PF2[8], PF2[9], PF2[10], Basinsize[1]); 
    
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF3[0], PF3[1], PF3[2], 
PF3[3], PF3[4], PF3[5], PF3[6], PF3[7], PF3[8], PF3[9], PF3[10], Basinsize[2]); 
    
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF4[0], PF4[1], PF4[2], 
PF4[3], PF4[4], PF4[5], PF4[6], PF4[7], PF4[8], PF4[9], PF4[10], Basinsize[3]); 
    
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF5[0], PF5[1], PF5[2], 
PF5[3], PF5[4], PF5[5], PF5[6], PF5[7], PF5[8], PF5[9], PF5[10], Basinsize[4]); 
    
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF6[0], PF6[1], PF6[2], 
PF6[3], PF6[4], PF6[5], PF6[6], PF6[7], PF6[8], PF6[9], PF6[10], Basinsize[5]); 
    
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF7[0], PF7[1], PF7[2], 
PF7[3], PF7[4], PF7[5], PF7[6], PF7[7], PF7[8], PF7[9], PF7[10], Basinsize[6]); 
     
    }//case for default dynamic rule 
 
 
 
    else if (option3 == 2) 
    { 
     printf("Please assign values for Ag, Ar and td(Note: The 
value of Ar must larger or equal to that of Ag). \n"); 
     scanf("%d%d%d", &Ag, &Ar, &td); 
 
     printf("Ag = %d\t Ar = %d\t td = %d\n", Ag, Ar, td); 
     
     for(i=0;i<=10;i++) 
     { 
      Sum[i] = 0;  
     } 
 
     for(i=0;i<=4;i++) 
     { 
      Selfdeg[i] = 1; 
     } 
 
     for(count=1;count<=2047;count++) 
  { 
   for(j=0;j<=10;j++) 
   { 
   if((count%(int)pow(2,j+1))<(int)pow(2,j)) 
    Sn[j] = 0; 
   else if((count%(int)pow(2,j+1))>=(int)pow(2,j)) 
    Sn[j] = 1; 
   } 
 
   for(i=0;i<=4;i++) 
   { 
    Selfdeg[i] = 1; 
   } 
    
   timeinterval = 0; 
 
  while(timeinterval != td) 
     { 
     for(i=0;i<=10;i++) 
     { 
      Sum[i] = 0; 
     } 
 
     if (firstentry == 1) 
     { 
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      for(i=0;i<=10;i++) 
      { 
       Sn[i] = So[i]; 
      } 
      firstentry = 0; 
     }   
 
     if (Sn[0] == 1)//self-degradation 
     { 
      Sum[1] = Sum[1] + Ag; 
      Sum[2] = Sum[2] + Ag; 
      Sum[0] = -1; 
     } 
 
     if (Sn[1] == 1) 
     { 
      Sum[7] = Sum[7] + Ag; 
     } 
 
     if (Sn[2] == 1) 
     { 
      Sum[3] = Sum[3] + Ag; 
     } 
 
     if (Sn[3] == 1)//self=degradation 
     { 
      if (Sn[2] == 0) 
      { 
       Sum[4] = Sum[4] - Ar; 
       Sum[8] = Sum[8] - Ar; 
       Sum[3] = -1; 
      } 
 
      else if(Sn[2] == 1) 
      { 
       Sum[4] = Sum[4] - Ar; 
       Sum[8] = Sum[8] - Ar; 
      } 
     } 
 
     if (Sn[4] == 1) 
     {  
      Sum[9] = Sum[9] - Ar; 
     } 
 
     if (Sn[5] == 1)//self-degradation 
     { 
      if (Sn[6] + Sn[10] - Sn[9] == 0) 
      { 
       Sum[8] = Sum[8] + Ag; 
       Sum[5] = -1; 
      } 
 
      else if(Sn[6] + Sn[10] - Sn[9] > 0) 
      { 
       Sum[8] = Sum[8] + Ag; 
      } 
     } 
 
     if (Sn[6] == 1)//self-degradation 
     { 
      if (Sn[9] + Sn[10] == 0) 
      { 
       Sum[4] = Sum[4] + Ag; 
       Sum[5] = Sum[5] + Ag; 
       Sum[8] = Sum[8] + Ag; 
       Sum[7] = Sum[7] - Ar; 
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       Sum[9] = Sum[9] - Ar; 
       Sum[6] = -1; 
      } 
 
      else if (Sn[9] + Sn[10] > 0) 
      { 
       Sum[4] = Sum[4] + Ag; 
       Sum[5] = Sum[5] + Ag; 
       Sum[8] = Sum[8] + Ag; 
       Sum[7] = Sum[7] - Ar; 
       Sum[9] = Sum[9] - Ar; 
      } 
     } 
 
     if (Sn[7] == 1) 
     { 
      Sum[9] = Sum[9] + Ag; 
      Sum[10] = Sum[10] + Ag; 
      Sum[4] = Sum[4] - Ar; 
      Sum[8] = Sum[8] - Ar; 
     } 
 
     if (Sn[8] == 1) 
     { 
      Sum[7] = Sum[7] - Ar; 
      Sum[9] = Sum[9] - Ar; 
     } 
 
     if (Sn[9] == 1) 
     { 
      Sum[6] = Sum[6] + Ag; 
      Sum[10] = Sum[10] + Ag; 
      Sum[1] = Sum[1] - Ar; 
      Sum[2] = Sum[2] - Ar; 
      Sum[4] = Sum[4] - Ar; 
      Sum[5] = Sum[5] - Ar; 
      Sum[8] = Sum[8] - Ar; 
     } 
 
     if (Sn[10] == 1)//self-degradation 
     { 
      if (Sn[9] == 0) 
      { 
       Sum[5] = Sum[5] + Ag; 
       Sum[6] = Sum[6] + Ag; 
       Sum[9] = Sum[9] + Ag; 
       Sum[10] = -1; 
      } 
 
      else if(Sn[9] == 1) 
      { 
       Sum[5] = Sum[5] + Ag; 
       Sum[6] = Sum[6] + Ag; 
       Sum[9] = Sum[9] + Ag; 
      } 
     } 
     //update the value for status conditions for all nodes 
 
     for(i=0;i<=10;i++) 
      { 
       Temp[i] = Sn[i]; 
      }//Store the old statuses in a Temp array 
 
     for(i=0;i<=10;i++) 
      { 
       So[i] = Temp[i]; 
      }//update the old statuses for 11 nodes 
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     for(i=0;i<=10;i++) 
     { 
      if (Sum[i] > 0) 
       Sn[i] = 1; 
      else if (Sum[i] < 0) 
       Sn[i] = 0; 
      else Sn[i] = So[i]; 
     }//The new statuses of all 11 nodes 
 
     if(Sn[0] == So[0] && Sn[1] == So[1] && Sn[2] == So[2] && 
Sn[3] == So[3] && Sn[4] == So[4] && Sn[5] == So[5] && Sn[6] == So[6] && Sn[7] == So[7] && Sn[8] == 
So[8] && Sn[9] == So[9] && Sn[10] == So[10])   
     { 
      timeinterval++; 
     } 
 
     else timeinterval = 0; 
 
     }//end of while loop for the fixed point 
 
      
     if(Sn[0] == So[0] && Sn[1] == So[1] && Sn[2] == So[2] && 
Sn[3] == So[3] && Sn[4] == So[4] && Sn[5] == So[5] && Sn[6] == So[6] && Sn[7] == So[7] && Sn[8] == 
So[8] && Sn[9] == So[9] && Sn[10] == So[10]) 
      { 
       if(Sn[0] == PF1[0] && Sn[1] == PF1[1] 
&& Sn[2] == PF1[2] && Sn[3] == PF1[3] && Sn[4] == PF1[4] && Sn[5] == PF1[5] && Sn[6] == PF1[6] && 
Sn[7] == PF1[7] && Sn[8] == PF1[8] && Sn[9] == PF1[9] && Sn[10] == PF1[10]) 
        Basinsize[0]++; 
       else if(Sn[0] == PF2[0] && Sn[1] == 
PF2[1] && Sn[2] == PF2[2] && Sn[3] == PF2[3] && Sn[4] == PF2[4] && Sn[5] == PF2[5] && Sn[6] == 
PF2[6] && Sn[7] == PF2[7] && Sn[8] == PF2[8] && Sn[9] == PF2[9] && Sn[10] == PF2[10]) 
        Basinsize[1]++; 
       else if(Sn[0] == PF3[0] && Sn[1] == 
PF3[1] && Sn[2] == PF3[2] && Sn[3] == PF3[3] && Sn[4] == PF3[4] && Sn[5] == PF3[5] && Sn[6] == 
PF3[6] && Sn[7] == PF3[7] && Sn[8] == PF3[8] && Sn[9] == PF3[9] && Sn[10] == PF3[10]) 
        Basinsize[2]++; 
       else if(Sn[0] == PF4[0] && Sn[1] == 
PF4[1] && Sn[2] == PF4[2] && Sn[3] == PF4[3] && Sn[4] == PF4[4] && Sn[5] == PF4[5] && Sn[6] == 
PF4[6] && Sn[7] == PF4[7] && Sn[8] == PF4[8] && Sn[9] == PF4[9] && Sn[10] == PF4[10]) 
        Basinsize[3]++; 
       else if(Sn[0] == PF5[0] && Sn[1] == 
PF5[1] && Sn[2] == PF5[2] && Sn[3] == PF5[3] && Sn[4] == PF5[4] && Sn[5] == PF5[5] && Sn[6] == 
PF5[6] && Sn[7] == PF5[7] && Sn[8] == PF5[8] && Sn[9] == PF5[9] && Sn[10] == PF5[10]) 
        Basinsize[4]++; 
       else if(Sn[0] == PF6[0] && Sn[1] == 
PF6[1] && Sn[2] == PF6[2] && Sn[3] == PF6[3] && Sn[4] == PF6[4] && Sn[5] == PF6[5] && Sn[6] == 
PF6[6] && Sn[7] == PF6[7] && Sn[8] == PF6[8] && Sn[9] == PF6[9] && Sn[10] == PF6[10]) 
        Basinsize[5]++; 
       else if(Sn[0] == PF7[0] && Sn[1] == 
PF7[1] && Sn[2] == PF7[2] && Sn[3] == PF7[3] && Sn[4] == PF7[4] && Sn[5] == PF7[5] && Sn[6] == 
PF7[6] && Sn[7] == PF7[7] && Sn[8] == PF7[8] && Sn[9] == PF7[9] && Sn[10] == PF7[10]) 
        Basinsize[6]++; 
      } 
 
    
 
 } 
 
 printf("Cln3\tMBF\tSBF\tCln1,2\tCdh1\tSwi5\tCdc20&Cdc14\tClb5,6\tSic1\tClb1,2\tMcm1&SFF\t
Basinsize \n"); 
  printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF1[0], PF1[1], 
PF1[2], PF1[3], PF1[4], PF1[5], PF1[6], PF1[7], PF1[8], PF1[9], PF1[10], Basinsize[0]); 
  printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF2[0], PF2[1], 
PF2[2], PF2[3], PF2[4], PF2[5], PF2[6], PF2[7], PF2[8], PF2[9], PF2[10], Basinsize[1]); 
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  printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF3[0], PF3[1], 
PF3[2], PF3[3], PF3[4], PF3[5], PF3[6], PF3[7], PF3[8], PF3[9], PF3[10], Basinsize[2]); 
  printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF4[0], PF4[1], 
PF4[2], PF4[3], PF4[4], PF4[5], PF4[6], PF4[7], PF4[8], PF4[9], PF4[10], Basinsize[3]); 
  printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF5[0], PF5[1], 
PF5[2], PF5[3], PF5[4], PF5[5], PF5[6], PF5[7], PF5[8], PF5[9], PF5[10], Basinsize[4]); 
  printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF6[0], PF6[1], 
PF6[2], PF6[3], PF6[4], PF6[5], PF6[6], PF6[7], PF6[8], PF6[9], PF6[10], Basinsize[5]); 
  printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF7[0], PF7[1], 
PF7[2], PF7[3], PF7[4], PF7[5], PF7[6], PF7[7], PF7[8], PF7[9], PF7[10], Basinsize[6]); 
   
 
    }//cases for other dynamic rules 
 
    else printf("Wrong Number!!\n"); 
     
    printf("\nBack to main list, please enter 0; to continue, please press 
1: "); 
    scanf("%d", &option2); 
   }//end of the while loop for option2 
 
  
  } 
 
  else  
  { 
   printf("\nNo such option!\n"); 
   printf("To investigate the trajectories in state space; please enter 1. \n"); 
   printf("To do statistics of the big fixed points of the cell-cycle network; please 
enter 2. \n"); 
   printf("To quit the program; please enter 3. \n"); 
   printf("Please select one option: ");  
   scanf("%d", &option); 
  } 
   
  printf("\nTo investigate the trajectories in state space; please enter 1. \n"); 
  printf("To do statistics of the big fixed points of the cell-cycle network; please enter 2. 
\n"); 
  printf("To quit the program; please enter 3. \n"); 
  printf("Please select one option: "); 
  scanf("%d", &option); 
 
 }//the end of the biggest while loop 
 
} 


