

Network Dynamics of Budding Yeast

Cell Cycle

CAI Chunhui

02050145

A thesis submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Science (Honors)

Supervisor: Dr Tang Lei-han

Department of Physics

Hong Kong Baptist University

April 22nd, 2005

 2

Declaration

I hereby declare that this thesis represents my own work which has been done in the

past one year for the fulfillment for the degree of Bachelor of Science (Honors) in

Physics major (computer science concentration) at Hong Kong Baptist University, and

has not been previously included in a thesis, dissertation submitted to this or other

institution for a degree, diploma or other qualification.

Signature: _______________

Date: April 22, 2005

 3

Acknowledgement

I would like to express my sincere gratitude towards my research project supervisor, Dr

Tang Lei-han for sharing his precious time to supervise and patronize my project.

I also would like to thank Prof. S.Y Zhu as well as all the other team members for their

valuable suggestion and comments.

I would thank all my friends, especially my girl friend for her continuous encouragement.

Finally, I would like to thank my family for their many years’ caring and support.

 4

ABSTRACT

The cell cycle of budding yeast is the succession of events that lead to reproduction

of daughter cells and are tightly regulated. In this project, we study a much

simplified model of cell cycle progression by Tang Chao and corroborate dynamic

properties of the model, such as stability and robustness, with time course gene

expression data. The regulation of yeast cell cycle clock is mainly based on the

transcriptional regulation of cell cycle genes which are controlled by nine known

transcription factors. Expression data are used to analyze the profiles of cell cycle

genes. Fourier transform method is applied to sort genes according to their

expression peak time. Furthermore, by combining expression time course data with

Gerstein’s regulatory network, we find three TF_orf clusters that function in

different cell cycle stages.

Keywords: cell cycle, gene expression, regulation, transcription factor, regulatory

network

 5

Table of Content

Declaration 2

Acknowledgements 3

Abstract 4

Table of Contents 5

List of Tables 7

List of Figures 8

Chapter 1 Introduction 10

1.1 Yeast Biology---10

1.2 Introduction to yeast cell cycle---11

1.3 Objective --12

Chapter 2 Yeast Cell Cycle Control 13

 2.1 Yeast Cell Cycle is Tightly Regulated---13

2.2 Yeast Cell Cycle Dynamic Model--15

Chapter 3 Gene Expression and Transcriptional Regulatory Network 21

3.1 Gene Expression---21

3.2 Transcriptional Regulatory Network---30

3.3 Clusters---33

 3.3.1 G1/S--33

 3.3.2 G2/M---38

 3.3.3 M/G1---40

Chapter 4 Achievements and Further Work 44

Bibliography 45

 6

Appendix--C programming code for cell cycle model implementation 48

 7

List of Tables

Table 2.1: Fixed points of cell-cycle network 17

Table 2.2: Time evolution of cell-cycle pathway 18

Table 3.1 Time elapsed after escape from cdc15 arrest 22

Table 3.2: 50 strongest oscillating genes 26

Table 3.3 Cell cycle progression time with phase description 29

Table 3.4: G1/S Cluster (Gene 47 to 90 in Fig 3.7) 37

Table 3.5: G2/M Cluster (Gene 17 to 56 in Fig 3.10) 39

Table 3.6: M/G1 Cluster (Gene 43 to 90 in Fig 3.11) 42

 8

List of Figures

Fig 2.1: Chao’s network 15

Fig 2.2: Dynamic trajectory of 1,764 protein states 20

Fig 3.1: Raw data of all cell cycle genes 23

Fig 3.2: Fourier transform magnitudes distribution 24

Fig 3.3: Expression of sorted genes (50,100,200,400,600,792) 25

Fig 3.4: Polar distribution of 50 strongest oscillating genes 27

Fig 3.5: Genes’ activation durations are related to their functions 27

Fig 3.6: Hypothetic phase description, First round of cell cycle progression 29

Fig 3.7: Groups of transcription factors function in different cell cycle stages 30

Fig 3.8: G1/S sub-network (TF: Mbp1(YDL056W), Swi4(YER111C) and

Swi6(YLR182W)) 31

Fig 3.9: G2/M sub-network (TF: Fkh2(YNL068C), Ndd1(YOR372C) and

Mcm1(YMR043W)) 32

Fig 3.10: M/G1 sub-network (TF: Mcm1(YMR043W), Swi5(YDR146C) and

Ace2(YLR131C)) 32

Fig 3.11: Expression of genes in G1/S sub-network with believed cluster of gene 47 to 90

 33

Fig 3.12_A: YJL158C 34

Fig 3.12_B: YHR061C 35

Fig 3.12_C: YNR044W 35

Fig 3.13_A: YJL158C 35

Fig 3.13_B: YHR061C 36

 9

Fig 3.13_C: YNR044W 36

Fig 3.14: Expression of genes in G2/M sub-network with believed cluster of gene 17 to

56 38

Fig 3.15: Expression of genes in M/G1 sub-network with believed cluster of gene 43 to

90 40

Fig 3.16: the clusters of cell cycle stage specific TF_orf groups 43

Fig 3.17: Simplified cell cycle TF_ orf network 43

 10

Chapter 1

Introduction

1.1 Yeast Biology

Budding Yeast, Saccharomyces cerevisiae, has been studied experimentally as

a model organism of biology since the 1930’s. Its complete genomic sequence was

published in 1996, the first among eukaryotic organisms. The genome of

Saccharomyces cerevisiae is divided up into 16 chromosomes, ranging from 220 kb to

2200 kb, with a total genome size of approximately 12,000kb. 6,183 open reading

frames (ORFs) on the genome have been identified, most of which are believed to

encode specific proteins.

 Saccharomyces cerevisiae is a unicellular organism which, unlike more

complex eukaryotes, can grow on defined media, giving the investigator complete

control of environmental parameters. Moreover, since there are substantial cellular

functions which are highly conserved from yeast to mammals, sequence information

obtained in the yeast genome project is extremely useful as a reference against the

sequences of human, animal or plant genes. The unique properties of the yeast

Saccharomyces cerevisiae, among some 700 yeast species and its enormous hidden

potential which has been exploited for many thousands of years, made it a preferred

organism for research.

 11

1.2 Introduction to Yeast Cell Cycle

 A yeast cell receives a wide variety of cellular and environmental signals, which

are often processed to generate specific genetic response. Here, we explore the

molecular and genetic machinery of yeast cell cycle control which forms a highly

independent system and is known in great detail.

 The cell cycle is the succession of events whereby a cell grows and divides into

two daughter cells that each contains the information and machinery necessary to

repeat the process. The basic function of the yeast cell cycle is like other eukaryotic

cells which is to duplicate accurately the vast amount of DNA in the chromosomes

and then segregate the two copies precisely into mother cell and daughter cell. These

processes define two major phases of the yeast cell cycle – S phase and M phase. Bud

emergence and DNA duplication occur during S phase(S for synthesis). After S phase,

DNA is segregated into mother cell and daughter cell (mitosis). When DNA has been

partitioned, the cell undergoes cell division (cytokinesis), separating mother cell from

the daughter cell. These two events occur in M phase. Besides these two major events,

the cell requires much time to grow and double their mass of proteins and organelles.

After S phase, replicated DNA is checked for its genetic integrity to ensure there is no

damage during replication, otherwise the cell cycle is halted for DNA reparation.

Hence, extra gap phases are inserted into the cell cycle – G2 between S phase and M

phase; while G1 between M phase and next S phase. Thus, the cell cycle is divided

into four sequential phases: G1, S, G2, M.

 Basic biology on yeast and its cell cycle are covered in most textbooks:

Biochemistry (Mathews et al 2000), Molecular Biology of the cell cycle (Alberts et al

2002) and Gene VIII (Lewin 2003). The online databases contain publications and

comprehensive information on yeast: SGD (http://www.yeastgenome.org/), SMD

 12

(http://genome-www5.stanford.edu/), CYGD (http://mips.gsf.de/proj/yeast/CYGD/db/)

and KEGG (http://www.genome.jp/kegg/).

1.3 Objectives

 Yeast cell cycle is tightly regulated for proper functioning at proper time. The cell

cycle control system guarantees the stability and robustness when cell goes through

cell cycle progression. In the present project, Prof. Tang Chao’s dynamic model is

employed and further implemented to demonstrate the global dynamic properties and

stabilities of cell cycle network. Our aim is to understand how the command system,

which is basically a controlled program of gene expression, is designed to regulate the

cell cycle. Beyond this much simplified model that focuses on the cell-cycle

progression, we wish to dig deeper into the genetic construction of regulatory circuit

and the ensuing dynamics. For this purpose, we examine the expression pattern of the

792 known cell cycle genes from time course measurement. By clustering into phase-

synchronized groups, we hope to decipher details of their regulatory program,

including on-off switch by single or multiple TFs, and the associated dynamic process

of TF binding or activation.

 13

Chapter 2

Yeast Cell Cycle Control

2.1 Yeast Cell Cycle is Tightly Regulated

 For many years, cell biologist watched the puppet show of DNA synthesis,

mitosis and cytokinesis but had no idea of what lay behind the curtain controlling

these events. The cell cycle control system was simply a black box inside the cell.

The cell cycle control system possesses the following features.

i. A clock, or timer, that turns on each event at a specific time, and

provide a relatively fixed amount of time for the completion of each

event;

ii. A mechanism for initiating events in correct order; for example, entry

into mitosis must always come after DNA replication

iii. A mechanism to ensure that each event is triggered only once per cycle;

for example, the DNA cannot be replicated twice during a single cell

cycle

iv. Binary (on/off) switch that trigger events in a complete, irreversible

fashion; It would be a disaster, if events like nuclear envelope

breakdown were initiated but not completed.

v. Robustness, backup mechanism to ensure that the cycle can process

smoothly even when parts of the systems malfunction

vi. Adaptability. So that the system’s behavior can be modified to suit

specific environmental conditions.

 14

 What makes up the control system to regulate the cell cycle clock? A lot of

surveys and studies have been done by biologists, showing that the control system is

mainly based on a family of protein kinase knows as CDK (cyclin-dependent kinase),

and gene regulation. In budding yeast cell cycle, there is only one CDK – Cdc28 (C

Wittenberg, 2005; Mart Loog and David O. Morgan, 2005; Alberghina et al, 2004).

 Much is known about Cdc28 activities and its functions (). Cdc28 associates

successively with different cyclins which is also proteins (Cln1,2,3,4; Clb1,2,5,6) to

trigger the different events of the cycle, and its activity is usually terminated by cyclin

degradation or inhibitory phophorylation (Nash et al., 1988). The activity of the

Cdc28 rises and falls as cell progress through the cycle and the oscillations lead

directly to cyclical change activation of certain proteins that initiate the major events

of the cell cycle, for example an increase in Clb2/Cdc28 activity at the beginning of

mitosis leads to increased activation of proteins that control chromosome

condensation, nuclear envelope breakdown and spindle assembly. Others like

Cln2/Cdc28 is responsible for DNA replication and Clb5/Cdc28 is responsible for bud

emergence (Tyers et al., 1993; Schwob and Nasmyth, 1993).

 The cell cycle control obviously depends on protein-protein interactions, which

is also referred to as post-transcriptional mechanism. However, transcriptional

regulation provides another level of control which is more fundamental. The genes

peak in different phase during cell cycle are responsible for synthesis of cell cycle

specific proteins. Some cyclin levels, for example, are controlled through cyclin gene

transcription, since the genes mainly code for proteins.

 15

2.2 Yeast Cell Cycle Dynamic Model

 How do physicists study cell cycle regulatory process? As they first studied

the hydrogen atom before coming into the more complex atoms, physicists first

focused on the yeast cell cycle with the most simplified network. Prof. Tang Chao

developed a simple dynamic model with just a few nodes to investigate the global

dynamic properties and stabilities of cell cycle network (Li 2004). Fig 2.1 shows the

proteins and their interactions (in the sense of information flow) in Chao's network.

Fig 2.1: Chao’s network

 This regulatory network includes cell size check point and 3 classes of proteins:

cyclin, which bind to the kinase Cdc28; the inhibitors, degraders, and competitors of

the cyclin/Cdc28 complexes (Sic1, Cdh1, Cdc20, Cdc14) and transcription factors

(SBF, MBF, Mcm1/SFF, Swi5). Green arrows represent positive regulations. For

example, when the cell grows large enough, the Cln3/Cdc28 will be activated, which

in turn activates a pair of transcription factor groups, SBF and MBF to activate the

genes of the cyclins Cln1,2 and Clb5,6, respectively. Red arrows represent negative

regulaton (inhibition, repression, or degradation). For example, the protein Sic1 can

bind to the Clb/Cdc28 complex to inhibit its function, Clb1,2 phosphorylate Swi5 to

prevent its entry into the nucleus, whereas Cdh1 targets Clb1,2 for degradation.

 16

Yellow loops are add to represent ‘self-degradation’ to those nodes that are not

negatively regulated by others. The degradation is modeled as a time-delayed

interaction: if a protein with a self yellow arrow is active at time t (Si(t) =1) and if its

total input is zero from time t to t+1, it will be degraded at time t+1, i.e., (Si=0). Since

much of the biology seems to be reflected in the on–off characteristics of the network

components, the nodes and arrows can be treated as logic-like operations in this

simplified dynamic network. Hence, each node i has only two states, Si=1 and Si=0,

representing the active and the inactive state of the protein, respectively, with totally

11 nodes in the network. The protein states in the next time step are determined by the

protein states in the present time step via the following rule:

where aij=1 for a green arrow from protein j to protein i and aij =1 for a red arrow

from j to i.

 17

Fixed Points

 We implemented the dynamic model to study the time evolution of the protein

states. Following Tang Chao’s work, we start from each of the 2,048 initial states in

the 11-node network. We find that all of the initial states eventually flow into one of

the seven stationary states (fixed points) shown in Table 2.1. There is one big fixed

point attracting 1,764 states among the seven fixed points. This super stable state is

the biological G1 stationary state. The advantage for a cell’s stationary state to be a

big attractor of the network is obvious: the stability of the cell state is guaranteed

since under normal conditions the cell will be sitting at this fixed point, waiting for

the signal for another round of division.

Table 2.1: Fixed points of cell-cycle network

Biological Pathway

 Next, we start the cell-cycle process with the cell size signal, and observe that

the system starts from G1 and goes back to the G1 stationary state. The temporal

evolution of the protein states indeed follows the cell-cycle sequence, shown in Table

2.2. This is the biological trajectory or pathway of the cell-cycle network which

represents the cell cycle progression

.

Basin size Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1
1,764 0 0 0 0 1 0 0 0 1 0 0
151 0 0 1 1 0 0 0 0 0 0 0
109 0 1 0 0 1 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0 1 0 0
7 0 1 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0

 18

Time Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1 Phase
1 1 0 0 0 1 0 0 0 1 0 0 Start
2 0 1 1 0 1 0 0 0 1 0 0 G1
3 0 1 1 1 1 0 0 0 1 0 0 G1
4 0 1 1 1 0 0 0 0 0 0 0 G1
5 0 1 1 1 0 0 0 1 0 0 0 S
6 0 1 1 1 0 0 0 1 0 1 1 G2
7 0 0 0 1 0 0 1 1 0 1 1 M
8 0 0 0 0 0 1 1 0 0 1 1 M
9 0 0 0 0 0 1 1 0 1 1 1 M
10 0 0 0 0 0 1 1 0 1 0 1 M
11 0 0 0 0 1 1 1 0 1 0 0 M
12 0 0 0 0 1 1 0 0 1 0 0 G1
13 0 0 0 0 1 0 0 0 1 0 0 Stationary G1

Table 2.2: Time evolution of cell-cycle pathway

 Newborn daughter cells grow to a critical size to have enough Cln3 to activate

the transcription factors, MBF and SBF, which transcriptional activate two classes of

cyclins, Cln1,2 and Clb5,6. Cln2 is primarily responsible for bud emergence and Clb5

for initiating DNA synthesis. Clb5-dependent kinase activity is not immediately

evident because the G1-phase cell is full of cyclin-dependent kinase inhibitors (Sic1).

After the Sic1 is phosphorylated by Cln2/Cdc28 for degradation, Clb5/Cdc28 is

released to do its job.

 Another class of cyclin, Clb2, are out of the picture in G1 because their

transcription factor, Mcm1, is inactive, their degradation pathway, Cdh1/APC, is

active, and their stoichiometric inhibitors, Sic1, are abundant. Cln2- and Clb5-

dependent kinases remove Sic1 and inactivate Cdh1. Clb2 is then allowed to appear.

Moreover, Clb2/Cdc28 soon activates its own transcription factor, Mcm1, which in

turn further drive its synthesis.

 Clb2/Cdc28 turns off SBF and MBF. As Clb2/Cdc28 drives the cell into

mitosis, it also sets the stage for exit from mitosis by stimulating the synthesis of

 19

Cdc20 which is transcriptional regulated by Mcm1. Then, Cdc20 promotes the

activation of Cdc14. Cdc20&Cdc14 play several roles in mitotic exit. First, they

degrades Clb5,6 and Clb1,2, remove their potency on Cdh1 inactivation. Next, they

activate Cdh1, stabilizing Sic1, and activate Swi5 (the transcription factor for Sic1).

As Clb2-kinase activity is quenched by Cdh1 and by Sic1 to below a threshold value,

a signal for exit from mitosis is triggered, the cell divides and returns to G1 phase.

 To investigate the dynamical stability of cell cycle pathway, Li et al (Li, 2004)

analyzed the dynamic trajectories of all 1,764 protein states that will flow to the G1

fixed point, shown in Fig 2.2. The cell cycle pathway is colored in blue and so is the

node representing the G1 stationary state. The dynamic flow of the protein states is

convergent onto the biological pathway, making the pathway an attracting trajectory

of the dynamics. With such a topological structure, the cell-cycle pathway is a very

stable trajectory; it is very unlikely for a sequence of events, starting at the beginning

(or at any other point) of the cell-cycle process, to deviate from the cell-cycle pathway.

 20

Fig 2.2: Dynamic trajectory of 1,764 protein states

 From Li et al (Li 2004), the yeast cell-cycle network is robustly designed.

Furthermore, since the network is only a skeleton of a larger cell-cycle network with

many ‘‘redundant’’ components and interactions, the complete network is expected to

be even more stable.

 21

Chapter 3

Gene Expression and Transcriptional Regulatory

Network

3.1 Gene Expression

 Regulation of the cell cycle clock is mainly effected through a controlled

program of gene expression (Paul T. Spellman, et al, 1998). In budding yeast, there

are about 800 cell cycle genes, oscillating during the cell cycle. Some of these genes

encode proteins with known cell-cycle functions, such as cell cycle control, cell wall

biogenesis, DNA replication and so on, but most are unknown.

 One set of gene expression time course data of cell cycle category was

collected from Stanford Microarray Database (http://genome-www5.stanford.edu).

The expression ratio was measured under the specific condition that yeast cells were

blocked in mitosis using a cdc15-2 temperature sensitive mutant at restrictive

temperature which is in order to synchronize the sample cells. The mutant can prevent

the release of CDC14 which will further activate CDH1. Hence, the cells are arrested

in 10th time step of Tang Chao’s cell cycle pathway. The culture was then shifted to

permissive temperature (25oC), and released into the cell cycle. The cell cycle then

starts at M/G1. Samples were then taken every 10 mins (some are taken every 20 mins)

during the course of over two full cell cycles, 290 mins (Table3.1). Then, we collected

798 cell cycle genes with some of predicted phases according to Richard Young’s

work in MIT (http://web.wi.mit.edu/young/cellcycle/). After the combination of

Richard Young’s cell cycle genes with those involved in the time course data, we

finally have a data set of 792 cell cycle genes.

 22

Time point Sample taken time
1 cdc15 010 min
2 cdc15 030 min
3 cdc15 050 min
4 cdc15 070 min
5 cdc15 080 min
6 cdc15 090 min
7 cdc15 100 min
8 cdc15 110 min
9 cdc15 120 min
10 cdc15 130 min
11 cdc15 140 min
12 cdc15 150 min
13 cdc15 160 min
14 cdc15 170 min
15 cdc15 180 min
16 cdc15 190 min
17 cdc15 200 min
18 cdc15 210 min
19 cdc15 220 min
20 cdc15 230 min
21 cdc15 240 min
22 cdc15 250 min
23 cdc15 270 min
24 cdc15 290 min

Table 3.1 Time elapsed after escape from cdc15 arrest

 In order to standardize and analyze the data set, we normalized the gene

expression data so that the average log2(ratio) over the course of the experiment is

equal to 0 and were further divided by the standard deviation. Fig 3.1 shows the raw

data set using color coding of the gene expression value during the yeast cell cycle.

Genes correspond to rows, and the time points of the experiment are the columns.

Yellow color means positive regulation, while blue color means negative regulation.

 23

Fig 3.1: Raw data of all cell cycle genes

 Hardly any information can be extracted from the above figure, because the

genes are disorderly placed along the Y axis. In order to test if these data is good and

whether we can see some periodic patterns that are expected, we applied Fourier

Transform to analyze the data. We calculated Fourier Transform magnitudes for each

gene in terms of different values of omega.

Im= ∑sin(ωtj)x(tj) (1)

 Re = ∑cos(ωtj)x(tj) (2)

 I = A2 + B2 (3)

 Φ= tan-1(Im/Re) (4)

 Since the cell cycle period usually varies from 90mins to120mins. The test

omega value is taken as 2*pi/90. Fig 3.2 shows the distribution of Fourier transform

magnitudes, with omega ranging from 0.4*test to 1.5*test and we can easily see that

time points

 24

most genes peak at either position 4 or position 5, which is 115 min and 125 min

respectively. Thus the periodical property of these genes under this condition is quite

similar. We also found that Fourier Transform magnitudes are unstable for small

variations of omega, so the magnitudes were averaged as well as phase over 115 to

125 mins with 1 min each step to get both magnitudes and phase of each gene.

Fig 3.2: Fourier transform magnitudes distribution

 The genes are then sorted according to their magnitudes which are their

fluctuation strength, and further sorted in terms of their phase (time of peak

expression). Fig 3.3 shows results of sorting the strongest 50, 100, 200, 400, 600 and

all cell cycle genes respectively.

 25

Fig 3.3: Expression of sorted genes (50,100,200,400,600,792)

time points time points

time points time points

time points time points

 26

 Fig 3.3 shows clearly the periodic patterns of cell cycle genes. These genes are

regulated in a periodic manner coincident with the cell cycle. Such gene regulation is

required for proper functioning of the control mechanism to maintain events’ order

through cell cycle. For example, the occurrence of 50 genes of strongest oscillation

obeys the cell cycle sequence, though the boundary is not absolute, shown in Table

3.1 and Fig 3.4.

Orf Phase Orf Phase Orf Phase

YPL187W m/g1 YJL078C g1 YBR009C s

YJL159W m/g1 YJL115W g1 YDR224C s

YKL185W m/g1 YPL267W g1 YBR010W s

YKL164C m/g1 YBL035C g1 YBL003C s

YKL163W m/g1 YLR286C g1 YMR003W s/g2

YDR261C s YDR097C g1 YML052W g2/m

YOR307C g1 YGR189C g1 YHL028W g2/m

YLR079W m/g1 YIL066C g1 YPR149W g2/m

YKR077W g1 YBR088C g1 YMR032W g2/m

YBR158W m/g1 YDL003W g1 YLR190W g2/m

YOR308C g1 YHR143W g1 YBR038W g2/m

YNL327W m/g1 YAR007C g1 YBR092C g2/m

YBR108W g1 YBR089W g1 YDR033W g2/m

YLR049C g1 YOL090W g1 YDR225W s

YGL028C g1 YPL256C g1 YBR054W g2/m

YGR044C g1 YOL007C g1 YNL160W m/g1

YCL024W g1 YNL030W s

Table 3.2: 50 strongest oscillating genes

 27

Fig 3.4: Polar distribution of 50 strongest oscillating genes

 Besides the differences among their peak expression time, genes may have

distinct duration of activation. Some genes are turned on for a short period and then

turned off again, while others are turned on for a longer period. This may be related to

their functionality. For example, genes responsible for cell wall biosynthesis and

integrity should be active during the course of mitosis (YHL028C) while others

required for cell cycle check points only need to function over a short period of time

(YCL024W), shown in Fig 3.5.

Fig 3.5: Genes’ activation durations are related to their functions

g1 m/g1

s

g2/m

 28

 The experiment as mentioned previously starts at late M phase and then the cell

enters G1 very quickly. The literature review of yeast cell cycle elucidates G1 and M

phases both generally take up about 1/3 cell cycle time, while S phase takes up over

1/2 of the remaining time (Dien BS, Srienc F, 1991). Since time duration of the cell

cycle in this experiment is around 120 mins, we can assign each time point with a

hypothetic phase description, i.e. 0 mins to 10 mins – M, 10 mins to 50 mins – G1, 50

mins to 80 mins – S, 80 mins to 90 mins – G2 and 90 mins to 120 mins – M, as shown

in Table 3.3. Gene expression is further plotted along with the hypothetical phase

description of first round of cell cycle in Fig 3.6. The result is supported by the 50

genes that have the strongest oscillations, as shown in Fig 3.4. The time for peak

expression of m/g1, g1, s and g2/m genes is 5 mins to 20 mins, 20 mins to 40 mins,

50 mins to 60 mins and 90 mins to 110 mins reapectively.

Time point Sample taken time
Hypothetical

Phase
1 cdc15 010 min M
2 cdc15 030 min G1
3 cdc15 050 min G1
4 cdc15 070 min S
5 cdc15 080 min S
6 cdc15 090 min G2
7 cdc15 100 min M
8 cdc15 110 min M
9 cdc15 120 min M
10 cdc15 130 min M
11 cdc15 140 min G1
12 cdc15 150 min G1
13 cdc15 160 min G1
14 cdc15 170 min G1
15 cdc15 180 min S
16 cdc15 190 min S
17 cdc15 200 min S
18 cdc15 210 min G2
19 cdc15 220 min M
20 cdc15 230 min M
21 cdc15 240 min M
22 cdc15 250 min M
23 cdc15 270 min G1

 29

24 cdc15 290 min G1

Table 3.3 Cell cycle progression time with phase description

Fig 3.6: Hypothetic phase description

First round of cell cycle progression

time points

G1 M S G2 M

 30

2.2 Transcriptional Regulatory Network

 Gene activation and repression events are initiated by a special class of

proteins known as transcription factors (TF) which bind to short DNA sequence

(known as binding motifs or TF binding sites) upstream the transcription start site of a

given gene. The collection of TF’s and their target ORF’s forms a transcriptional

regulatory network that constructs the backbone of the genetic regulatory program for

all cellular process. The yeast cell cycle gene expression program can be viewed as

outcome of such a program in action. Nine known cell cycle transcriptional factors are

involved, each regulating a group of genes and functioning during one stage of cell

cycle. Furthermore, these nine transcription factors are divided into three groups, as

illustrated in Fig 3.7. Mbp1, Swi4 and Swi6 control the late G1 genes. Mcm1, Fkh2

(or Fkh1) and Ndd1 control the transcription of G2/M genes. Mcm1 is also involved

in the transcription of genes at the end of m and early G1 together with Swi5 and

Ace2 (Itamar Simon, et al, 2001).

Fig 3.7: Groups of transcription factors function in different cell cycle stages

 31

 In 2004, a genome-scale transcriptional regulatory network, involving 7074

regulatory interactions between 142 transcription factors and 3420 target genes, was

developed by Mark Gerstein his collaborators (Nicholas M. Luscombe, et al, 2004),

one of the most complete so far. 409 out of 792 cell cycle genes were extracted from

the network and drawn into three sub-networks using Pajek (http://vlado.fmf.uni-

lj.si/pub/networks/pajek/). Fig 3.8 to Fig 3.10 show sub-networks correspond to G1/S,

G2/M and M/G1 transitions, with big green nodes and red nodes representing the

transcription factors and target genes respectively. The arrows indicate the direction

of information flow. Yellow nodes were added to indicate regulators of the

transcription factors.

Fig 3.8: G1/S sub-network
 (TF: Mbp1(YDL056W), Swi4(YER111C) and Swi6(YLR182W))

 32

Fig 3.9: G2/M sub-network
 (TF: Fkh2(YNL068C), Ndd1(YOR372C) and Mcm1(YMR043W))

Fig 3.10: M/G1 sub-network
 (TF: Mcm1(YMR043W), Swi5(YDR146C) and Ace2(YLR131C))

 33

2.3 Cluster

 Not all of the interactions between transcription factors and genes contained in

the Gerstein’s network have been experimental verified. Therefore, comparing the

regulating network with time course micro-array data will not only serve to confirm

the proposed genetic interactions, but also yield information on the execution of the

regulatory program in a dynamic context.

2.3.1 G1/S Cluster

Fig 3.11: Expression of genes in G1/S sub-network

The cluster of gene 47 to 90 is clearly visible

 Fig 3.11 shows gene expression controlled by G1/S transcription factors

according to Gerstein’s work. From the phase sorted expression pattern, we find that

gene 47 to 90, form a synchronized cluster and hence are good candidate for targets of

the three G1/S transcription factors alone. The other genes behavior differently could

time points

 34

be corregulated by other transcription factors. Checked with Richard Young’s cell

cycle phase description, genes in this cluster are almost exclusively ‘g1’ genes, while

the others are categorized into ‘s’, ‘g2/m’ or ‘m/g1’. To verify our guess, we searched

the binding motifs of several genes (http://jura.wi.mit.edu/fraenkel/regcode/).

 Fig 3.12 shows the binding motifs of ‘YJL158C’ (No12 gene in Fig 3.11)

YHR061C (No13 gene in Fig 3.11) and ‘YNR044W’ (No45 gene in Fig 3.11) that

have different oscillation properties from the ‘cluster’. The result indicates that

‘YJL158C’ seems to have no binding site in the promoter region. ‘YHR061C’ has two

binding sites for fkh2 that function in next stage G2/M. ‘YNR044W’ could not be

regulated by G1/S transcription factors at all.

Fig 3.12_A: YJL158C

 35

Fig 3.12_B: YHR061C

Fig 3.12_C: YNR044W

 Fig 3.13 shows the binding motifs of ‘YBR071W’ (No49 gene in Fig 3.11),

‘YJL073W’ (No61 gene in Fig 3.11) and ‘YDL003W’ (No80 gene in Fig 3.11) in the

‘cluster’. All have at least one binding site for G1/S transcription factors.

Fig 3.13_A: YBR071W

 36

Fig 3.13_B: YJL073W

Fig 3.13_C: YDL003W

 We have checked against the binding data for all the genes in Fig 3.11 when

available. The sample genes shown here are representative of the situation for the

majority of genes in this group. Their functional annotation is given in table 3.4.

ORF
No ORF

Young’s
phase Annotation

47 YNL273W g1 TOF1 topoisomerase I interacting factor 1
48 YOR315W g2/m N/A
49 YBR071W g1 N/A
50 YDL127W g1 PCL2 cyclin, G1/S-specific

51 YDL102W g1
 CDC2 DNA-directed DNA polymerase delta, catalytic 125 KD

subunit
52 YJR030C g1 N/A
53 YMR179W g1 SPT21 required for normal transcription at a number of loci
54 YAR008W g1 SEN34 tRNA splicing endonuclease gamma subunit
55 YGR109C g1 CLB6 cyclin, B-type
56 YDR309C g1 GIC2 Cdc42 GTPase-binding protein
57 YGR041W g1 BUD9 budding protein
58 YGL038C g1 OCH1 alpha-1,6-mannosyltransferase

 37

59 YBR070C g1 SAT2 osmotolerance protein
60 YDR279W g1 N/A
61 YJL073W g1 N/A
62 YNL289W g1 PCL1 cyclin, G1/S-specific

63 YKL045W g1
 PRI2 DNA-directed DNA polymerase alpha , 58 KD subunit

(DNA primase)
64 YPL267W g1 N/A
65 YGR221C g1 TOS2 Target of SBF, localizes to the bud neck and bud tip
66 YGR153W g1 N/A
67 YLR286C g1 CTS1 endochitinase
68 YOR248W g1 N/A
69 YDR097C g1 MSH6 DNA mismatch repair protein
70 YOR075W g1 UFE1 syntaxin (T-SNARE) of the ER
71 YGR152C g1 RSR1 GTP-binding protein
72 YDR528W g1 N/A

73 YGR189C g1
 CRH1 family of putative glycosidases might exert a common

role in cell wall organization

74 YML100W g1
 TSL1 alpha,alpha-trehalose-phosphate synthase, 123 KD

subunit
75 YHR149C g1 SKG6 similarity to hypothetical protein YGR221c
76 YPR120C g1 CLB5 cyclin, B-type

77 YNL231C g1
 PDR16 protein involved in lipid biosynthesis and multidrug

resistance

78 YDR501W g1
 PLM2 PLasmid Maintenance mutant shows 2mu-m plasmid

instability
79 YOL019W g1 N/A
80 YDL003W g1 MCD1 Mitotic Chromosome Determinant
81 YGR151C g1 N/A
82 YAR007C g1 RFA1 DNA replication factor A, 69 KD subunit

83 YLR103C g1
 CDC45 required for minichromosome maintenance and

initiation of chromosomal DNA replication
84 YDL018C g1 N/A
85 YER095W g1 RAD51 DNA repair protein
86 YJL074C g1 SMC3 required for structural maintenance of chromosomes
87 YCR065W g1 HCM1 transcription factor
88 YNL102W g1 POL1 DNA-directed DNA polymerase alpha, 180 KD subunit
89 YPL256C g1 CLN2 cyclin, G1/S-specific
90 YDL101C g1 DUN1 protein kinase

Table 3.4: G1/S Cluster (Gene 47 to 90 in Fig 3.9)

 In conclusion, the G1/S cluster contains 44 genes. The well studied G1 cyclin

genes Clb5,6 and Cln2 are included as well as budding protein BUD9. Others with

similar behavior in the experiment were added to form a cluster of G1/S coregulated

genes.

 38

2.3.2 G2/M

Fig 3.14: Expression of genes in G2/M sub-network

The cluster of gene 17 to 56 is clearly visible

 Fig 3.14 shows gene expression controlled by G2/M transcription factors

according to Gerstein’s work. Similarly, we believe that gene 17 to 56 is within the

same cluster that is most possibly controlled by M/G1 transcription factors. We also

checked with Richard Young’s cell cycle phase description and genes in the ‘cluster’

are almost ‘g2/m’ genes, while the others do not have such a regulation. However,

there seems to be a small cluster between gene 70 and 90 regulated by Mcm1 in M/G1.

time points

 39

ORF
No ORF

Young’s
phase Annotation

17 YML064C g2/m TEM1 GTP-binding protein of the RAS superfamily
18 YDR150W s/g2 NUM1 nuclear migration protein
19 YPL111W g2/m CAR1 arginase
20 YOR247W g1 N/A
21 YPL155C s/g2 KIP2 kinesin-related protein

22 YBR133C s/g2
 HSL7 adapter in a regulatory pathway that relieves tyrosine

phosphorylation of Cdc28
23 YIL158W g2/m N/A
24 YGL255W g2/m ZRT1 Zinc transporter I
25 YNL192W m/g1 CHS1 chitin synthase I
26 YMR001C g2/m CDC5 protein kinase, involved in regulation of DNA replication
27 YML052W g2/m N/A
28 YLR131C g2/m ACE2 metallothionein expression activator
29 YHL028W g2/m WSC4 Cell wall integrity and stress response component 4
30 YGR108W g2/m CLB1 cyclin, G2/M-specific
31 YAL053W g1 N/A
32 YKL096W-A s/g2 CWP2 cell wall mannoprotein
33 YPL141C s/g2 N/A
34 YOR025W g2/m HST3 silencing protein
35 YMR144W s N/A
36 YLR084C g2/m N/A
37 YDR146C g2/m SWI5 transcription factor
38 YMR002W s/g2 N/A
39 YBR138C g2/m HDR1 High-Dosage Reductional segregation defective
40 YPR149W g2/m NCE102 involved in non-classical protein export pathway
41 YPR119W g2/m CLB2 cyclin, G2/M-specific
42 YGL008C g2/m PMA1 H+-transporting P-type ATPase
43 YOR129C g2/m N/A

44 YLR190W g2/m
 MMR1 protein localized to bud sites and tips, mother-bud

junction
45 YCR024C-A g2/m PMP1 H+-ATPase subunit, plasma membrane
46 YHR151C g2/m N/A
47 YGL162W g2/m SUT1 hypoxic protein involved in sterol uptake
48 YNL172W g2/m APC1 subunit of anaphase-promoting complex (cyclosome)

49 YOR023C g2/m
 AHC1 component of the ADA histone acetyltransferase

complex
50 YNL056W g2/m N/A
51 YJR092W g2/m BUD4 budding protein

52 YDL048C g2/m
 STP4 involved in pre-tRNA splicing and in uptake of

branched-chain amino acids
53 YBR038W g2/m CHS2 chitin synthase II
54 YER070W g1 RNR1 ribonucleoside-diphosphate reductase, large subunit
55 YBR092C g2/m PHO3 constitutive acid phosphatase precursor
56 YMR253C g2/m N/A

Table 3.5: G2/M Cluster (Gene 17 to 56 in Fig 3.13)

 40

 In conclusion, the G2/M cluster contains 40 genes. The well studied G2/M

cyclin genes Clb1,2 are involved and others with similar behavior in the experiment

were added to form a cluster of G2/M coregulated genes.

2.3.3 M/G1

Fig 3.15: Expression of genes in M/G1 sub-network

The cluster of gene 43 to 90 is clearly visible

 Fig 3.15 shows gene expression controlled by M/G1 transcription factors

according to Gerstein’s work. Similarly, we believe that gene 43 to 90 is within the

same cluster that is most possibly controlled by M/G1 transcription factors. We also

checked with Richard Young’s cell cycle phase description. Genes in the ‘cluster’ are

almost exclusively ‘m/g1’ or ‘g1’ genes, while the others do not have such a

time points

 41

regulation. However, there also seems to be a small cluster between gene 20 and 30

which is regulated by Mcm1 in G2/M.

ORF
No ORF

Young’s
phase Annotation

43 YJL194W m/g1 N/A

44 YKL178C m/g1
 MMR1 protein localized to bud sites and tips, mother-bud

junction
45 YOR066W m/g1 PMP1 H+-ATPase subunit, plasma membrane
46 YLR274W m/g1 N/A
47 YPL187W m/g1 SUT1 hypoxic protein involved in sterol uptake
48 YBR202W g2/m APC1 subunit of anaphase-promoting complex (cyclosome)

49 YLR273C m/g1
 AHC1 component of the ADA histone acetyltransferase

complex
50 YJL159W m/g1 N/A
51 YJL196C m/g1 BUD4 budding protein

52 YKL185W m/g1
 STP4 involved in pre-tRNA splicing and in uptake of branched-

chain amino acids
53 YKL164C m/g1 CHS2 chitin synthase II
54 YNL328C m/g1 RNR1 ribonucleoside-diphosphate reductase, large subunit
55 YPL158C m/g1 PHO3 constitutive acid phosphatase precursor
56 YIL009W m/g1 N/A
57 YKL163W m/g1 PDS5 precocious dissociation of sister chromatids
58 YGR234W m/g1 CDC20 cell division control protein
59 YDR055W m/g1 MRH1 membrane protein related to Hsp30p
60 YNR044W m/g1 IAH1 isoamyl acetate hydrolytic enzyme
61 YEL040W m/g1 N/A
62 YER189W g1 STE2 pheromone alpha-factor receptor
63 YFL064C g1 KIN3 ser/thr protein kinase
64 YER152C g1 AGA2 a-agglutinin binding subunit
65 YLR079W m/g1 DBF2 ser/thr protein kinase related to Dbf20p
66 YGR086C m/g1 MFA2 mating pheromone a-factor 2
67 YEL077C g1 BNS1 Bypasses Need for Spo12p
68 YBR158W m/g1 RGA1 RHO-type GTPase-activating protein for Cdc42p
69 YER190W g1 SPO12 sporulation protein
70 YKL151C m/g1 SWI4 transcription factor
71 YOR315W g2/m CLN3 cyclin, G1/S-specific
72 YNL327W m/g1 CDC6 cell division control protein
73 YGL089C g1 STE3 pheromone a-factor receptor
74 YDL127W g1 N/A
75 YPL283C m/g1 CDC46 cell division control protein
76 YLR049C g1 MF(ALPHA)1 mating pheromone alpha-1 precursor
77 YGR296W g1 CDC47 cell division control protein
78 YGL028C g1 PIG1 putative type 1 phosphatase regulatory subunit
79 YLR194C m/g1 HSP150 member of the Pir1p/Hsp150p/Pir3p family
80 YGR044C g1 ELO1 fatty acid elongation protein
81 YGR041W g1 PIR1 required for tolerance to heat shock
82 YJL157C g2/m CLN1 cyclin, G1/S-specific
83 YJL051W g2/m KEL2 involved in cell fusion and morphogenesis
84 YJL078C g1 PIR3 member of the Pir1p/Pir2p/Pir3p family

 42

85 YNL289W g1 EXG2 exo-beta-1,3-glucanase minor isoform
86 YLR286C g1 N/A
87 YDR528W g1 N/A
88 YGR189C g1 AGA1 a-agglutinin anchor subunit
89 YDR461W g1 UTR2 cell wall protein

Table 3.6: M/G1 Cluster (Gene 43 to 90 in Fig 3.14)

 In conclusion, the M/G1 cluster contains 48 genes. Cdc20, Cdc6 and Cln3 are

involved where Cdc20 and Cdc6 trigger the exit from mitosis and Cln3 is the cell

cycle signal for cell cycle division. Others with similar behavior in the experiment

were added to form a cluster of M/G1 coregulated genes.

 These clusters provide a foundation for understanding the transcriptional

mechanism of cell cycle regulation. Fig 3.16 shows the entire cluster-gram of the

transcription factor target genes. The corresponding network is shown in Fig 3.17.

As discussed previously, these identified corregulated genes share common binding

sites. Presumably the genes within the same group somehow have related functions.

The 44 G1/S cluster genes include CLN2, CLB5,6, CDC2, PRI2, SEN34, RFA1,

CDC45 and many other genes involved in DNA replication. Many genes known to be

involved in mitosis is found in G2/M cluster which contains 40 genes, such as CDC5,

CLB1,2, SWI5, APC1 and BUD4. The G2/M cluster which contains 48 genes

includes 4 cell division control proteins CDC20, CDC6, CDC46 and CDC47.

 43

Fig 3.16: the clusters of cell cycle stage specific TF_orf groups

Fig 3.17: Simplified cell cycle TF_ orf network

time points

 44

Chapter 4

Achievements and Further Work

 The purpose of the present project is to study the regulatory program of yeast

cell cycle. Implementation of Prof. Tang Chao’s model gives us a good demonstration

of cell cycle’s robustness and stability. By digging into gene expression program and

further grouping the genes into phase synchronized clusters, we confirmed the

proposed genetic interactions.

 Even though the cell cycle regulatory proteins are few and their roles well-

characterized, the execution of the dynamic program is rather complex and many of

the details are yet to be understood. In the thesis, we have only examined the gene

expression data from one time course experiment. With more data under various

experimental conditions, along with good binding data, one may overcome some of

the intrinsic issues with noise and obtain a more complete picture of cell cycle gene

regulation. Furthermore, beyond the static interactions between the transcription

factors and target genes, we would like to understand in more detail the turning on/off

process of a given gene by one or more transcription factors, and how such processes

at the single gene level are fine tuned to meet the global demands of cell growth,

replication, and division.

 45

Bibliography

• Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P.

Molecular Biology of the Cell, Fourth Edition (2002).

• Iyer, V. R. et al. Genomic binding sites of the yeast cell-cycle transcription

factors SBF and MBF. Nature 409, 533–538 (2001).

• Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces

cerevisiae. Science 298, 799–804 (2002).

• Wang, W., Cherry, J.M., Botstein, D. & Li, H. A systematic approach to

reconstructing transcription networks in Saccharomyces cerevisiae. Proc. Natl.

Acad. Sci. 99, 16893-16898(2002).

• Christopher T. Harbison, et al, Transcriptional regulatory code of a eukaryotic

genome, Nature, 431, 99-104, (2004)

• Fangting Li, Tao Long, Ying Lu, Qi Ouyang, and Chao Tang, The yeast cell-

cycle network is robustly designed, PNAS, 101, 14, 4781-4786, (2004)

• Nicolas E. Buchler, Ulrich Gerland, and Terence Hwa, On schemes of

combinatorial transcription logic, PNAS, 100, 9, 5136-5141, (2003)

• Paul T. Spellman, et al, Comprehensive Identification of Cell Cycle-regulated

Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization,

Molecular Biology of the Cell, 9, 3273-3297, (1998)

• Bruce Futcher, Transcriptional regulatory networks and the yeast cell cycle,

Current Opinion in Cell Biology, 14, 676-683, (2002)

• Itamar Simon, et al, Serial Regulation of Transcriptional Regulators in the

Yeast Cell Cycle, Cell, 106, 697-708, (2001)

 46

• Gordon Chua, et al, Transcriptional networks: reverse-engineering gene

regulation on a global scale, Current Opinion in Microbiology, 7: 638-646,

(2004)

• Ian A. Taylor, et al, Characterization of the DNA-Binding Domains from the

Yeast Cell-Cycle Transcription Factors Mbp1 and Swi4, Biochemistry, 39,

3943-3954, (2000)

• Dien BS, Srienc F, Bromodeoxyuridine labeling and flow cytometric

identification of replicating Saccharomyces cerevisiae cells: lengths of cell

cycle phases and population variability at specific cell cycle positions,

Biotechnol Prog, 7(4):291-8, (1991)

• C Wittenberg, Cell cycle: Cyclin guides the way, Nature 434, 34 - 35 (2005).

• Mart Loog and David O. Morgan, Cyclin specificity in the phosphorylation of

cyclin-dependent kinase substrates, Nature 434, 104-108 (2005)

• Alberghina et al, A cell sizer network involving Cln3 and Far1 controls

entrance into S phase in the mitotic cycle of budding yeast, J. Cell Biol, 167,

433-443.(2004)

• Nash, R., Tokiwa, G., Anand, S., Erickson, K. and Futcher, A.B, The WHI1+

gene of Saccharomyces cerevisiae tethers cell division to cell size and is a

cyclin homolog. EMBO J. 7, 4335-4346, (1988).

• Tyers, M., Tokiwa, G. and Futcher B, Comparison of the Saccharomyces

cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and

other cyclins. EMBO J. 12:1955-68, (1993)

• Schwob, E. and Nasmyth, K, CLB5 and CLB6, a new pair of B cyclins

involved in DNA replication in Saccharomyces cerevisiae. Genes Dev.

7:1160-1175, (1993).

 47

• Nicholas M. Luscombe, et al, Genomic analysis of regulatory network

dynamics reveals large topological changes, Nature, 431, 308-312, (2004)

 48

Appendix -- C programming code for cell cycle model
implementation
// Implementation of Chao's model used to investigate the fixed points and biological pathway
under various dynamic rules
// Andy Cai
// 11/2004

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void main()
{
 int option, option1, option2, option3;
 int Sn[] = {0,0,0,0,0,0,0,0,0,0,0};
 int So[] = {0,0,0,0,0,0,0,0,0,0,0};
 int Temp[] = {0,0,0,0,0,0,0,0,0,0,0};
 int Sum[] = {0,0,0,0,0,0,0,0,0,0,0};
 int S[] = {0,0,0,0,0,0,0,0,0,0,0};
 int Selfdeg[] = {1,1,1,1,1};
 int Basinsize[] = {0,0,0,0,0,1,0};
 int i, j, count, firstentry;
 int Ag, Ar, td;
 int timeinterval;

 int PF1[] = {0,0,0,0,1,0,0,0,1,0,0};
 int PF2[] = {0,0,1,1,0,0,0,0,0,0,0};
 int PF3[] = {0,1,0,0,1,0,0,0,1,0,0};
 int PF4[] = {0,0,0,0,0,0,0,0,1,0,0};
 int PF5[] = {0,1,0,0,0,0,0,0,1,0,0};
 int PF6[] = {0,0,0,0,0,0,0,0,0,0,0};
 int PF7[] = {0,0,0,0,1,0,0,0,0,0,0};

 printf("To investigate the trajectories in state space; please enter 1. \n");
 printf("To do statistics of the big fixed points of the cell-cycle network; please enter 2. \n");
 printf("To quit the program; please enter 3. \n");
 printf("Please select one option: ");
 scanf("%d", &option);

 while(option != 3)
 {
 for(i=0;i<=10;i++)
 {
 Sn[i] = So[i] = Temp[i] = Sum[i] = S[i] = 0;
 }

 for(i=0;i<=4;i++)
 {
 Selfdeg[i] = 1;
 }

 for(i=0;i<=6;i++)
 {
 Basinsize[i] = 0;
 Basinsize[5] = 1;
 }

 if (option == 1)
 {
 printf("\nBack to main list, please enter 0; to continue, please press 1: ");
 scanf("%d", &option1);

 while(option1 != 0)
 {
 for(i=0;i<=10;i++)

 49

 {
 Sn[i] = So[i] = Temp[i] = Sum[i] = S[i] = 0;
 }

 printf("\nPlease assign values for Ag, Ar and td(Note: The value of
Ar must larger or equal to that of Ag). \n");
 scanf("%d%d%d", &Ag, &Ar, &td);

 printf("Ag = %d\t Ar = %d\t td = %d\n", Ag, Ar, td);

 for(i=0;i<=10;i++)
 {
 Sum[i] = 0;
 }

 for(i=0;i<=4;i++)
 {
 Selfdeg[i] = 1;
 }

 firstentry = 1;
 printf("\nPlease assign state statuses for 11 nodes(1 for activated
node; 0 for deactivated node), Cln3, MBF, SBF, Cln1,2, Cdh1, Swi5, Cdc20&Cdc14, Clb5,6, Sic1,
Clb1,2 and Mcm1&SFF: \n");
 scanf("%d%d%d%d%d%d%d%d%d%d%d", &So[0], &So[1], &So[2],
&So[3], &So[4], &So[5], &So[6], &So[7], &So[8], &So[9], &So[10]);

 printf("Cln3\tMBF\tSBF\tCln1,2\tCdh1\tSwi5\tCdc20&Cdc14\tClb5,6\tSic1\tClb1,2\tMcm1&SFF
\n");
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\n", So[0],
So[1], So[2], So[3], So[4], So[5], So[6], So[7], So[8], So[9], So[10]);

 timeinterval = 0;

 while(timeinterval!=td)
 {
 for(i=0;i<=10;i++)
 {
 Sum[i] = 0;
 }

 if (firstentry == 1)
 {
 for(i=0;i<=10;i++)
 {
 Sn[i] = So[i];
 }
 firstentry = 0;
 }

 if (Sn[0] == 1)//self-degradation
 {
 Sum[1] = Sum[1] + Ag;
 Sum[2] = Sum[2] + Ag;

 if(Selfdeg[0] == td)
 Sum[0] = -1;
 else Selfdeg[0]++;
 }

 if (Sn[1] == 1)
 {
 Sum[7] = Sum[7] + Ag;
 }

 if (Sn[2] == 1)

 50

 {
 Sum[3] = Sum[3] + Ag;
 }

 if (Sn[3] == 1)//self=degradation
 {
 if (Sn[2] == 0)
 {
 Sum[4] = Sum[4] - Ar;
 Sum[8] = Sum[8] - Ar;

 if(Selfdeg[1] == td)
 Sum[3] = -1;
 else Selfdeg[1]++;
 }

 else if(Sn[2] == 1)
 {
 Sum[4] = Sum[4] - Ar;
 Sum[8] = Sum[8] - Ar;
 Selfdeg[1] = 1;
 }
 }

 if (Sn[4] == 1)
 {
 Sum[9] = Sum[9] - Ar;
 }

 if (Sn[5] == 1)//self-degradation
 {
 if (Sn[6] + Sn[10] - Sn[9] == 0)
 {
 Sum[8] = Sum[8] + Ag;

 if(Selfdeg[2] == td)
 Sum[5] = -1;
 else Selfdeg[2]++;
 }

 else if(Sn[6] + Sn[10] - Sn[9] > 0)
 {
 Sum[8] = Sum[8] + Ag;
 Selfdeg[2] = 1;
 }
 }

 if (Sn[6] == 1)//self-degradation
 {
 if (Sn[9] + Sn[10] == 0)
 {
 Sum[4] = Sum[4] + Ag;
 Sum[5] = Sum[5] + Ag;
 Sum[8] = Sum[8] + Ag;
 Sum[7] = Sum[7] - Ar;
 Sum[9] = Sum[9] - Ar;

 if(Selfdeg[3] == td)
 Sum[6] = -1;
 else Selfdeg[3]++;
 }

 else if (Sn[9] + Sn[10] > 0)
 {
 Sum[4] = Sum[4] + Ag;
 Sum[5] = Sum[5] + Ag;
 Sum[8] = Sum[8] + Ag;

 51

 Sum[7] = Sum[7] - Ar;
 Sum[9] = Sum[9] - Ar;
 Selfdeg[3] = 1;
 }
 }

 if (Sn[7] == 1)
 {
 Sum[9] = Sum[9] + Ag;
 Sum[10] = Sum[10] + Ag;
 Sum[4] = Sum[4] - Ar;
 Sum[8] = Sum[8] - Ar;
 }

 if (Sn[8] == 1)
 {
 Sum[7] = Sum[7] - Ar;
 Sum[9] = Sum[9] - Ar;
 }

 if (Sn[9] == 1)
 {
 Sum[6] = Sum[6] + Ag;
 Sum[10] = Sum[10] + Ag;
 Sum[1] = Sum[1] - Ar;
 Sum[2] = Sum[2] - Ar;
 Sum[4] = Sum[4] - Ar;
 Sum[5] = Sum[5] - Ar;
 Sum[8] = Sum[8] - Ar;
 }

 if (Sn[10] == 1)//self-degradation
 {
 if (Sn[9] == 0)
 {
 Sum[5] = Sum[5] + Ag;
 Sum[6] = Sum[6] + Ag;
 Sum[9] = Sum[9] + Ag;
 if(Selfdeg[4] == td)
 Sum[10] = -1;
 else Selfdeg[4]++;
 }

 else if(Sn[9] == 1)
 {
 Sum[5] = Sum[5] + Ag;
 Sum[6] = Sum[6] + Ag;
 Sum[9] = Sum[9] + Ag;
 }
 }
 //update the value for status conditions for all nodes

 for(i=0;i<=10;i++)
 {
 Temp[i] = Sn[i];
 }//Store the old statuses in a Temp array

 for(i=0;i<=10;i++)
 {
 So[i] = Temp[i];
 }//update the old statuses for 11 nodes

 for(i=0;i<=10;i++)
 {
 if (Sum[i] > 0)
 Sn[i] = 1;
 else if (Sum[i] < 0)

 52

 Sn[i] = 0;
 else Sn[i] = So[i];
 }//The new statuses of all 11 nodes

 if(Sn[0] == So[0] && Sn[1] == So[1] && Sn[2] == So[2] &&
Sn[3] == So[3] && Sn[4] == So[4] && Sn[5] == So[5] && Sn[6] == So[6] && Sn[7] == So[7] && Sn[8] ==
So[8] && Sn[9] == So[9] && Sn[10] == So[10])
 {
 timeinterval++;
 }

 else timeinterval = 0;

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\n",
Sn[0], Sn[1], Sn[2], Sn[3], Sn[4], Sn[5], Sn[6], Sn[7], Sn[8], Sn[9], Sn[10]);

 }//end of while loop for the fixed point

 printf("\nBack to main list, please enter 0; to continue, please press 1: ");
 scanf("%d", &option1);
 }//end of the while loop for option1

 }//case for option 1

 else if (option == 2)
 {
 printf("\nBack to main list, please enter 0; to continue, please press 1: ");
 scanf("%d", &option2);

 while(option2 != 0)
 {
 for(i=0;i<=10;i++)
 {
 Sn[i] = So[i] = Temp[i] = Sum[i] = S[i] = 0;
 }

 for(i=0;i<=4;i++)
 {
 Selfdeg[i] = 1;
 }

 for(i=0;i<=6;i++)
 {
 Basinsize[i] = 0;
 Basinsize[5] = 1;
 }

 printf("\nTo do statistics with default dynamic rule settings, please
enter 1. \n");
 printf("To do statistics with other dynamics rule settings, please
enter 2. \n");
 printf("Please make a choice: ");
 scanf("%d", &option3);

 if (option3 == 1)
 {
 for(count=1;count<=2048;count++)
 {
 for(j=0;j<=10;j++)
 {
 if((count%(int)pow(2,j+1))<(int)pow(2,j))
 Sn[j] = 0;
 else
if((count%(int)pow(2,j+1))>=(int)pow(2,j))
 Sn[j] = 1;
 }

 53

 while(Sn[0] != So[0] || Sn[1] != So[1] || Sn[2] != So[2] ||
Sn[3] != So[3] || Sn[4] != So[4] || Sn[5] != So[5] || Sn[6] != So[6] || Sn[7] != So[7] || Sn[8] != So[8] ||
Sn[9] != So[9] || Sn[10] != So[10])
 {
 for(i=0;i<=10;i++)
 {
 Sum[i] = 0;
 }

 if (firstentry == 1)
 {
 for(i=0;i<=10;i++)
 {
 Sn[i] = So[i];
 }
 firstentry = 0;
 }

 if (Sn[0] == 1)//self-degradation
 {
 Sum[1] = Sum[1] + 1;
 Sum[2] = Sum[2] + 1;
 Sum[0] = -1;
 }

 if (Sn[1] == 1)
 {
 Sum[7] = Sum[7] + 1;
 }

 if (Sn[2] == 1)
 {
 Sum[3] = Sum[3] + 1;
 }

 if (Sn[3] == 1)//self=degradation
 {
 if (Sn[2] == 0)
 {
 Sum[4] = Sum[4] - 1;
 Sum[8] = Sum[8] - 1;
 Sum[3] = -1;
 }

 else if(Sn[2] == 1)
 {
 Sum[4] = Sum[4] - 1;
 Sum[8] = Sum[8] - 1;
 }
 }

 if (Sn[4] == 1)
 {
 Sum[9] = Sum[9] - 1;
 }

 if (Sn[5] == 1)//self-degradation
 {
 if (Sn[6] + Sn[10] - Sn[9] == 0)
 {
 Sum[8] = Sum[8] + 1;
 Sum[5] = -1;
 }

 else if(Sn[6] + Sn[10] - Sn[9] > 0)
 {

 54

 Sum[8] = Sum[8] + 1;
 }
 }

 if (Sn[6] == 1)//self-degradation
 {
 if (Sn[9] + Sn[10] == 0)
 {
 Sum[4] = Sum[4] + 1;
 Sum[5] = Sum[5] + 1;
 Sum[8] = Sum[8] + 1;
 Sum[7] = Sum[7] - 1;
 Sum[9] = Sum[9] - 1;
 Sum[6] = -1;
 }

 else if (Sn[9] + Sn[10] > 0)
 {
 Sum[4] = Sum[4] + 1;
 Sum[5] = Sum[5] + 1;
 Sum[8] = Sum[8] + 1;
 Sum[7] = Sum[7] - 1;
 Sum[9] = Sum[9] - 1;
 }
 }

 if (Sn[7] == 1)
 {
 Sum[9] = Sum[9] + 1;
 Sum[10] = Sum[10] + 1;
 Sum[4] = Sum[4] - 1;
 Sum[8] = Sum[8] - 1;
 }

 if (Sn[8] == 1)
 {
 Sum[7] = Sum[7] - 1;
 Sum[9] = Sum[9] - 1;
 }

 if (Sn[9] == 1)
 {
 Sum[6] = Sum[6] + 1;
 Sum[10] = Sum[10] + 1;
 Sum[1] = Sum[1] - 1;
 Sum[2] = Sum[2] - 1;
 Sum[4] = Sum[4] - 1;
 Sum[5] = Sum[5] - 1;
 Sum[8] = Sum[8] - 1;
 }

 if (Sn[10] == 1)//self-degradation
 {
 if (Sn[9] == 0)
 {
 Sum[5] = Sum[5] + 1;
 Sum[6] = Sum[6] + 1;
 Sum[9] = Sum[9] + 1;
 Sum[10] = -1;
 }

 else if(Sn[9] == 1)
 {
 Sum[5] = Sum[5] + 1;
 Sum[6] = Sum[6] + 1;
 Sum[9] = Sum[9] + 1;
 }

 55

 }
 //update the value for status conditions for all
nodes

 for(i=0;i<=10;i++)
 {
 Temp[i] = Sn[i];
 }//Store the old statuses in a Temp array

 for(i=0;i<=10;i++)
 {
 So[i] = Temp[i];
 }//update the old statuses for 11 nodes

 for(i=0;i<=10;i++)
 {
 if (Sum[i] > 0)
 Sn[i] = 1;
 else if (Sum[i] < 0)
 Sn[i] = 0;
 else Sn[i] = So[i];
 }//The new statuses of all 11 nodes

 if(Sn[0] == So[0] && Sn[1] == So[1] && Sn[2] ==
So[2] && Sn[3] == So[3] && Sn[4] == So[4] && Sn[5] == So[5] && Sn[6] == So[6] && Sn[7] == So[7] &&
Sn[8] == So[8] && Sn[9] == So[9] && Sn[10] == So[10])
 {
 if(Sn[0] == PF1[0] && Sn[1] ==
PF1[1] && Sn[2] == PF1[2] && Sn[3] == PF1[3] && Sn[4] == PF1[4] && Sn[5] == PF1[5] && Sn[6] ==
PF1[6] && Sn[7] == PF1[7] && Sn[8] == PF1[8] && Sn[9] == PF1[9] && Sn[10] == PF1[10])
 Basinsize[0]++;
 else if(Sn[0] == PF2[0] && Sn[1]
== PF2[1] && Sn[2] == PF2[2] && Sn[3] == PF2[3] && Sn[4] == PF2[4] && Sn[5] == PF2[5] && Sn[6] ==
PF2[6] && Sn[7] == PF2[7] && Sn[8] == PF2[8] && Sn[9] == PF2[9] && Sn[10] == PF2[10])
 Basinsize[1]++;
 else if(Sn[0] == PF3[0] && Sn[1]
== PF3[1] && Sn[2] == PF3[2] && Sn[3] == PF3[3] && Sn[4] == PF3[4] && Sn[5] == PF3[5] && Sn[6] ==
PF3[6] && Sn[7] == PF3[7] && Sn[8] == PF3[8] && Sn[9] == PF3[9] && Sn[10] == PF3[10])
 Basinsize[2]++;
 else if(Sn[0] == PF4[0] && Sn[1]
== PF4[1] && Sn[2] == PF4[2] && Sn[3] == PF4[3] && Sn[4] == PF4[4] && Sn[5] == PF4[5] && Sn[6] ==
PF4[6] && Sn[7] == PF4[7] && Sn[8] == PF4[8] && Sn[9] == PF4[9] && Sn[10] == PF4[10])
 Basinsize[3]++;
 else if(Sn[0] == PF5[0] && Sn[1]
== PF5[1] && Sn[2] == PF5[2] && Sn[3] == PF5[3] && Sn[4] == PF5[4] && Sn[5] == PF5[5] && Sn[6] ==
PF5[6] && Sn[7] == PF5[7] && Sn[8] == PF5[8] && Sn[9] == PF5[9] && Sn[10] == PF5[10])
 Basinsize[4]++;
 else if(Sn[0] == PF6[0] && Sn[1]
== PF6[1] && Sn[2] == PF6[2] && Sn[3] == PF6[3] && Sn[4] == PF6[4] && Sn[5] == PF6[5] && Sn[6] ==
PF6[6] && Sn[7] == PF6[7] && Sn[8] == PF6[8] && Sn[9] == PF6[9] && Sn[10] == PF6[10])
 Basinsize[5]++;
 else if(Sn[0] == PF7[0] && Sn[1]
== PF7[1] && Sn[2] == PF7[2] && Sn[3] == PF7[3] && Sn[4] == PF7[4] && Sn[5] == PF7[5] && Sn[6] ==
PF7[6] && Sn[7] == PF7[7] && Sn[8] == PF7[8] && Sn[9] == PF7[9] && Sn[10] == PF7[10])
 Basinsize[6]++;
 }

 }//end of while loop for the fixed point

 }

 printf("Cln3\tMBF\tSBF\tCln1,2\tCdh1\tSwi5\tCdc20&Cdc14\tClb5,6\tSic1\tClb1,2\tMcm1&SFF\t
Basinsize \n");

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF1[0], PF1[1], PF1[2],
PF1[3], PF1[4], PF1[5], PF1[6], PF1[7], PF1[8], PF1[9], PF1[10], Basinsize[0]);

 56

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF2[0], PF2[1], PF2[2],
PF2[3], PF2[4], PF2[5], PF2[6], PF2[7], PF2[8], PF2[9], PF2[10], Basinsize[1]);

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF3[0], PF3[1], PF3[2],
PF3[3], PF3[4], PF3[5], PF3[6], PF3[7], PF3[8], PF3[9], PF3[10], Basinsize[2]);

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF4[0], PF4[1], PF4[2],
PF4[3], PF4[4], PF4[5], PF4[6], PF4[7], PF4[8], PF4[9], PF4[10], Basinsize[3]);

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF5[0], PF5[1], PF5[2],
PF5[3], PF5[4], PF5[5], PF5[6], PF5[7], PF5[8], PF5[9], PF5[10], Basinsize[4]);

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF6[0], PF6[1], PF6[2],
PF6[3], PF6[4], PF6[5], PF6[6], PF6[7], PF6[8], PF6[9], PF6[10], Basinsize[5]);

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF7[0], PF7[1], PF7[2],
PF7[3], PF7[4], PF7[5], PF7[6], PF7[7], PF7[8], PF7[9], PF7[10], Basinsize[6]);

 }//case for default dynamic rule

 else if (option3 == 2)
 {
 printf("Please assign values for Ag, Ar and td(Note: The
value of Ar must larger or equal to that of Ag). \n");
 scanf("%d%d%d", &Ag, &Ar, &td);

 printf("Ag = %d\t Ar = %d\t td = %d\n", Ag, Ar, td);

 for(i=0;i<=10;i++)
 {
 Sum[i] = 0;
 }

 for(i=0;i<=4;i++)
 {
 Selfdeg[i] = 1;
 }

 for(count=1;count<=2047;count++)
 {
 for(j=0;j<=10;j++)
 {
 if((count%(int)pow(2,j+1))<(int)pow(2,j))
 Sn[j] = 0;
 else if((count%(int)pow(2,j+1))>=(int)pow(2,j))
 Sn[j] = 1;
 }

 for(i=0;i<=4;i++)
 {
 Selfdeg[i] = 1;
 }

 timeinterval = 0;

 while(timeinterval != td)
 {
 for(i=0;i<=10;i++)
 {
 Sum[i] = 0;
 }

 if (firstentry == 1)
 {

 57

 for(i=0;i<=10;i++)
 {
 Sn[i] = So[i];
 }
 firstentry = 0;
 }

 if (Sn[0] == 1)//self-degradation
 {
 Sum[1] = Sum[1] + Ag;
 Sum[2] = Sum[2] + Ag;
 Sum[0] = -1;
 }

 if (Sn[1] == 1)
 {
 Sum[7] = Sum[7] + Ag;
 }

 if (Sn[2] == 1)
 {
 Sum[3] = Sum[3] + Ag;
 }

 if (Sn[3] == 1)//self=degradation
 {
 if (Sn[2] == 0)
 {
 Sum[4] = Sum[4] - Ar;
 Sum[8] = Sum[8] - Ar;
 Sum[3] = -1;
 }

 else if(Sn[2] == 1)
 {
 Sum[4] = Sum[4] - Ar;
 Sum[8] = Sum[8] - Ar;
 }
 }

 if (Sn[4] == 1)
 {
 Sum[9] = Sum[9] - Ar;
 }

 if (Sn[5] == 1)//self-degradation
 {
 if (Sn[6] + Sn[10] - Sn[9] == 0)
 {
 Sum[8] = Sum[8] + Ag;
 Sum[5] = -1;
 }

 else if(Sn[6] + Sn[10] - Sn[9] > 0)
 {
 Sum[8] = Sum[8] + Ag;
 }
 }

 if (Sn[6] == 1)//self-degradation
 {
 if (Sn[9] + Sn[10] == 0)
 {
 Sum[4] = Sum[4] + Ag;
 Sum[5] = Sum[5] + Ag;
 Sum[8] = Sum[8] + Ag;
 Sum[7] = Sum[7] - Ar;

 58

 Sum[9] = Sum[9] - Ar;
 Sum[6] = -1;
 }

 else if (Sn[9] + Sn[10] > 0)
 {
 Sum[4] = Sum[4] + Ag;
 Sum[5] = Sum[5] + Ag;
 Sum[8] = Sum[8] + Ag;
 Sum[7] = Sum[7] - Ar;
 Sum[9] = Sum[9] - Ar;
 }
 }

 if (Sn[7] == 1)
 {
 Sum[9] = Sum[9] + Ag;
 Sum[10] = Sum[10] + Ag;
 Sum[4] = Sum[4] - Ar;
 Sum[8] = Sum[8] - Ar;
 }

 if (Sn[8] == 1)
 {
 Sum[7] = Sum[7] - Ar;
 Sum[9] = Sum[9] - Ar;
 }

 if (Sn[9] == 1)
 {
 Sum[6] = Sum[6] + Ag;
 Sum[10] = Sum[10] + Ag;
 Sum[1] = Sum[1] - Ar;
 Sum[2] = Sum[2] - Ar;
 Sum[4] = Sum[4] - Ar;
 Sum[5] = Sum[5] - Ar;
 Sum[8] = Sum[8] - Ar;
 }

 if (Sn[10] == 1)//self-degradation
 {
 if (Sn[9] == 0)
 {
 Sum[5] = Sum[5] + Ag;
 Sum[6] = Sum[6] + Ag;
 Sum[9] = Sum[9] + Ag;
 Sum[10] = -1;
 }

 else if(Sn[9] == 1)
 {
 Sum[5] = Sum[5] + Ag;
 Sum[6] = Sum[6] + Ag;
 Sum[9] = Sum[9] + Ag;
 }
 }
 //update the value for status conditions for all nodes

 for(i=0;i<=10;i++)
 {
 Temp[i] = Sn[i];
 }//Store the old statuses in a Temp array

 for(i=0;i<=10;i++)
 {
 So[i] = Temp[i];
 }//update the old statuses for 11 nodes

 59

 for(i=0;i<=10;i++)
 {
 if (Sum[i] > 0)
 Sn[i] = 1;
 else if (Sum[i] < 0)
 Sn[i] = 0;
 else Sn[i] = So[i];
 }//The new statuses of all 11 nodes

 if(Sn[0] == So[0] && Sn[1] == So[1] && Sn[2] == So[2] &&
Sn[3] == So[3] && Sn[4] == So[4] && Sn[5] == So[5] && Sn[6] == So[6] && Sn[7] == So[7] && Sn[8] ==
So[8] && Sn[9] == So[9] && Sn[10] == So[10])
 {
 timeinterval++;
 }

 else timeinterval = 0;

 }//end of while loop for the fixed point

 if(Sn[0] == So[0] && Sn[1] == So[1] && Sn[2] == So[2] &&
Sn[3] == So[3] && Sn[4] == So[4] && Sn[5] == So[5] && Sn[6] == So[6] && Sn[7] == So[7] && Sn[8] ==
So[8] && Sn[9] == So[9] && Sn[10] == So[10])
 {
 if(Sn[0] == PF1[0] && Sn[1] == PF1[1]
&& Sn[2] == PF1[2] && Sn[3] == PF1[3] && Sn[4] == PF1[4] && Sn[5] == PF1[5] && Sn[6] == PF1[6] &&
Sn[7] == PF1[7] && Sn[8] == PF1[8] && Sn[9] == PF1[9] && Sn[10] == PF1[10])
 Basinsize[0]++;
 else if(Sn[0] == PF2[0] && Sn[1] ==
PF2[1] && Sn[2] == PF2[2] && Sn[3] == PF2[3] && Sn[4] == PF2[4] && Sn[5] == PF2[5] && Sn[6] ==
PF2[6] && Sn[7] == PF2[7] && Sn[8] == PF2[8] && Sn[9] == PF2[9] && Sn[10] == PF2[10])
 Basinsize[1]++;
 else if(Sn[0] == PF3[0] && Sn[1] ==
PF3[1] && Sn[2] == PF3[2] && Sn[3] == PF3[3] && Sn[4] == PF3[4] && Sn[5] == PF3[5] && Sn[6] ==
PF3[6] && Sn[7] == PF3[7] && Sn[8] == PF3[8] && Sn[9] == PF3[9] && Sn[10] == PF3[10])
 Basinsize[2]++;
 else if(Sn[0] == PF4[0] && Sn[1] ==
PF4[1] && Sn[2] == PF4[2] && Sn[3] == PF4[3] && Sn[4] == PF4[4] && Sn[5] == PF4[5] && Sn[6] ==
PF4[6] && Sn[7] == PF4[7] && Sn[8] == PF4[8] && Sn[9] == PF4[9] && Sn[10] == PF4[10])
 Basinsize[3]++;
 else if(Sn[0] == PF5[0] && Sn[1] ==
PF5[1] && Sn[2] == PF5[2] && Sn[3] == PF5[3] && Sn[4] == PF5[4] && Sn[5] == PF5[5] && Sn[6] ==
PF5[6] && Sn[7] == PF5[7] && Sn[8] == PF5[8] && Sn[9] == PF5[9] && Sn[10] == PF5[10])
 Basinsize[4]++;
 else if(Sn[0] == PF6[0] && Sn[1] ==
PF6[1] && Sn[2] == PF6[2] && Sn[3] == PF6[3] && Sn[4] == PF6[4] && Sn[5] == PF6[5] && Sn[6] ==
PF6[6] && Sn[7] == PF6[7] && Sn[8] == PF6[8] && Sn[9] == PF6[9] && Sn[10] == PF6[10])
 Basinsize[5]++;
 else if(Sn[0] == PF7[0] && Sn[1] ==
PF7[1] && Sn[2] == PF7[2] && Sn[3] == PF7[3] && Sn[4] == PF7[4] && Sn[5] == PF7[5] && Sn[6] ==
PF7[6] && Sn[7] == PF7[7] && Sn[8] == PF7[8] && Sn[9] == PF7[9] && Sn[10] == PF7[10])
 Basinsize[6]++;
 }

 }

 printf("Cln3\tMBF\tSBF\tCln1,2\tCdh1\tSwi5\tCdc20&Cdc14\tClb5,6\tSic1\tClb1,2\tMcm1&SFF\t
Basinsize \n");
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF1[0], PF1[1],
PF1[2], PF1[3], PF1[4], PF1[5], PF1[6], PF1[7], PF1[8], PF1[9], PF1[10], Basinsize[0]);
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF2[0], PF2[1],
PF2[2], PF2[3], PF2[4], PF2[5], PF2[6], PF2[7], PF2[8], PF2[9], PF2[10], Basinsize[1]);

 60

 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF3[0], PF3[1],
PF3[2], PF3[3], PF3[4], PF3[5], PF3[6], PF3[7], PF3[8], PF3[9], PF3[10], Basinsize[2]);
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF4[0], PF4[1],
PF4[2], PF4[3], PF4[4], PF4[5], PF4[6], PF4[7], PF4[8], PF4[9], PF4[10], Basinsize[3]);
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF5[0], PF5[1],
PF5[2], PF5[3], PF5[4], PF5[5], PF5[6], PF5[7], PF5[8], PF5[9], PF5[10], Basinsize[4]);
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF6[0], PF6[1],
PF6[2], PF6[3], PF6[4], PF6[5], PF6[6], PF6[7], PF6[8], PF6[9], PF6[10], Basinsize[5]);
 printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t\t%d\t%d\t%d\t%d\t\t%d\n", PF7[0], PF7[1],
PF7[2], PF7[3], PF7[4], PF7[5], PF7[6], PF7[7], PF7[8], PF7[9], PF7[10], Basinsize[6]);

 }//cases for other dynamic rules

 else printf("Wrong Number!!\n");

 printf("\nBack to main list, please enter 0; to continue, please press
1: ");
 scanf("%d", &option2);
 }//end of the while loop for option2

 }

 else
 {
 printf("\nNo such option!\n");
 printf("To investigate the trajectories in state space; please enter 1. \n");
 printf("To do statistics of the big fixed points of the cell-cycle network; please
enter 2. \n");
 printf("To quit the program; please enter 3. \n");
 printf("Please select one option: ");
 scanf("%d", &option);
 }

 printf("\nTo investigate the trajectories in state space; please enter 1. \n");
 printf("To do statistics of the big fixed points of the cell-cycle network; please enter 2.
\n");
 printf("To quit the program; please enter 3. \n");
 printf("Please select one option: ");
 scanf("%d", &option);

 }//the end of the biggest while loop

}

