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Since the identification of the fundamental pathways of intermediate metabolism some 
30 years ago it has been recognized that the stage has been set for the study of the 
regulation of metabolism. A multitude of experimental investigations have yielded insight 
into various principles of regulation such as induction and repression of enzymes, modu- 
lation of their activity by covalent modification and by allosteric effectors, the distribu- 
tory function of coenzymes and metabolites and so on. On the other hand there has 
grown a sizable literature on the theoretical analysis of biological regulation, mostly 
by means of mathematical models. There is no denying the fact that there exists a 
dichotomy, with the experimenters taking little cognizance of the results of the theoreti- 
cal work while much of the modeling is far removed from concrete biological systems. 
It is the purpose of the present survey to help bridge this chasm--or, if it fails, to 
land between the two chairs--by trying to do justice to both the viewpoints of the 
modeler and the experimenter. It will try to keep biological questions always in the 
center while maintaining mathematical rigor. It is not intended to deal with a wide 
range of biological systems and levels. It will concentrate essentially on the energy 
metabolism of eukaryotes neglecting both the epigenetic level and the intercellular inter- 
actions. We shall not attempt to survey the entire variety of mathematical models pro- 
posed. The validity and utility of a given model should be judged in the long run 
by the experimenters in that field. Since, however, the methods of setting up models 
have much in common their general principles will be presented in such a way that 
they can be applied without undue difficulty by the non-expert in mathematics. The 
application of the methods will be shown on two kinds of examples, for one on simplified 
biochemical systems and secondly, on glycolysis, especially of the erythrocytes, as a 
concrete biological system. The first type serves mainly to clarify the mathematical 
aspects and to derive some biological principles, the latter to demonstrate some of 
the biological conclusions which may be drawn. The analysis of the dynamics of the 
systems includes the conditions under which oscillations may arise or be suppressed. 
Furthermore, the problems of control of metabolic systems and the methods to identify 
and assess the controlling steps are considered. 

II. MODELING AS A METHOD FOR THE STUDY 
OF THE METABOLIC REGULATION 

1. Some Characteristics of Biological Systems 
Since modeling aims at a deeper understanding of real systems reasonable models 

have to represent essential qualities of the objects they simulate. Given this starting 

ABBREVIATIONS 
Metabolites: G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; FP2, fructose 1,6-biphosphate; GAP, gly- 
ceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; triose-P, triose phosphate (sum of GAP and 
DHAP); 1,3P2G, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglyeerate; 2PG, 2-phosphoglyeerate; PPyr, phos- 
phoenolpyruvate; Pyr, pyruvate; Lac, lactate; 2,3-bisphosphoglyeerate; GP2, glucose 1,6-bisphosphate; 
Mg. ATP, 1 : 1 complex of Mg 2+ with ATP. 
Enzymes: In the formulae and figures the following abbreviations of enzymes are used for identification: 
HK, hexokinase (EC 2.7.1.1); PGI, phosphoglucoisomerase (EC 5.3.1.9); PFK, phosphofruetokinase (EC 
2.7.1.11 ); Aid, aldolase (EC 4.1.2.7 ); TIM, triose phosphate i somerase (EC 5.3.1.1 ); GAPD, glyeeraldehydephos- 
phate dehydrogenase (EC 1.2.1.12); PGK, phosphoglyeerate kinase (EC 2.7.2.3); PGM, phosphoglyceromutase 
(EC 2.7.5.3); Enol, enolase (EC 4.2.1.11); PK, pyruvate kinase (EC 2.7.1.40); LDH, lactate dehydrogenase 
(EC 1.1.1.28); P2GM, bisphosphoglycerate-mutase (EC 2.7.5.3); P2Gase, 2,3-bisphosphoglyeerate phosphatase 
(EC 3.1.3.13). 
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point it is appropriate to consider briefly some of the characteristics of biological sys- 
tems. 
1. Biological systems are hierarchical. One may distinguish two types of hierarchy: one, 

a hierarchy with respect to the time scales, the characteristic time of which range 
over more than fifteen orders of magnitude. At the lower end are the elementary 
reactions of the enzymes, on the upper genetic regulations in evolution. Secondly, 
there is a hierarchy of material structures, ranging from low-molecular compounds 
to organisms and populations. It is obviously a hopeless task to encompass the totality 
of all levels of time and structural organization. Modeling of metabolism singles out 
a range of about 5-6 orders of magnitude from 10 -2 to 10 4 seconds and limits 
itself essentially to the cell and its substructures. 

2. Metabolism is subdivided into functional units. Such units are the metabolic pathways 
of the cell. What constitutes a metabolic pathway? An obvious answer is derived 
from the fundamental goal of the study of intermediary metabolism to elucidate the 
fate of any substrate from its entry into a cell to its final destination. Metabolic 
pathways may be considered to be semiindependent functional entities. This view 
is supported by comparative studies which show differences in types and quantitative 
relations of pathways among the organs of one species as well as among different 
species. Pathways tend also to react differently to changes of the functional state 
of the organism. On the other hand, groups of pathways are interconnected both 
functionally and by connecting metabolites and thus form complex subsystems of 
the cell. For instance, one may subsume all ATP-producing pathways as the energy- 
producing subsystem. Functionally, neither glycolysis nor respiration are fully inde- 
pendent since they react vicariously to the energy needs of the cell and are strongly 
interacting with each other. 
Despite the apparent clarity of the concept of metabolic pathways the cellular physi- 
ologist and even more so the modeler frequently encounter difficulties in the unam- 
biguous definition and confinement of subsystems of metabolism, which could be in- 
vestigated in isolation experimentally or theoretically. A definition which would meet 
the stringent theoretical demands on a subsystem of the cell would require that each 
component of the isolated subsystem is formed and degraded by reactions which 
are part of the model considered. The exceptions permitted are storage end-products 
such as glycogen and metabolites which change so slowly that they may be taken 
as constant for the time period investigated. According to such a definition of a 
system the oxidative pentose phosphate pathway, for instance, does not constitute 
an independent metabolic pathway. Furthermore, there may be substrates of pathways 
which are saturating and need not be considered for the dynamical description of 
the system. 

3. Biological systems are regulated. Their regulatory properties are expressed in the pre- 
cise determination of kind, amount, distribution in space and kinetics of most of 
their components. Regulation is characterized by the teleonomic response of biological 
systems to external and internal signals. There exist identifiable elements which cause 
changes of the behaviour of biological systems, i.e. controls. There exist common 
regulatory principles such as feedback inhibition, buffering systems for metabolites 
and off- and on- switching of complementary processes. 

The investigation of the regulation of metabolic systems includes the answering of the 
following questions: How does a metabolic pathway react to an external signal? Which 
enzymes are important for the control of the flux and the metabolites? Where and 
how do external signals interact with an important enzyme? By what mechanism are 
different pathways which form a subsystem interconnected? 

2. Why Modeling? 

Modeling is an advanced technique for the study of the regulation. It involves the 
quantitative consideration of the multitude of data and interactions characteristic for 
biological systems. Models are simplifying abstractions of the reality. They may be 
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useful for the deduction of the essential relations in metabolism which constitute a 
characteristic dynamic structure. If the model is compatible with the experimental data 
it is likely that the dynamic structure of the system is correctly assumed. Many non- 
essential interactions can therefore be excluded as non-regulatory. Since the structure 
of the model is less complex than that of a real system and since the model is manipu- 
lable the basic principles of regulations may be evaluated. The model may be regarded 
as a hypothesis which is tested by the data. Usually, there is a choice among several 
hypothesis. Modeling may reject some of them but cannot positively prove any of them. 
However, modeling may help to design further experiments which discriminate better 
between alternatives. In many cases the model is not compatible with the data at the 
beginning although the incorporated knowledge seemed to be established experimentally. 
Thus, the simulator may discover inconsistencies in the experimental data or establish 
a new hypothesis (e.g. Garfinkel, 1971). The model allows for a coherent representation 
of the data and avoids the empirical accumulation of a multitude of facts which some- 
times are irrelevant. Finally, modeling has a practical aspect. It can be hoped, that 
the behaviour of the system may be pre~dicted or even designed so that the cells can 
be manipulated in the desired way (Garfinkel, 1976; Garfinkel et al., 1976). 

3. Preconditions of  Modeling 

The most important precondition is the knowledge of the main metabolic routes. 
It requires the identification of the stoichiometric relations in the various enzymatic 
reactions, branching and merging points, bypasses and most of the intermediates. The 
enzymes should have been identified and characterized kinetically so that the main 
effectors of their activity are known. It is then possible to supplement the stoichiometric 
network by addition of the non-stoichiometric interactions by connecting the metabolites 
with their target enzymes which they affect allosterically. Simplified rate laws of the 
enzymes and the K,, and Ki-values should be known. Compartmentation of metabolites 
have to be recognized. It is obvious that not only their effective concentrations in each 
compartment but also the transport processes between compartments should be known. 
For mitochondria information on these points is now available (Gumaa et al., 1971). 
Enzyme-enzyme-interactions although an interesting object of study appear to be of 
less importance. An important step toward the understanding of the regulation of meta- 
bolism and an important precondition for modeling is the elucidation of the flux distri- 
bution in the network. This is usually performed by isotope techniques in one of two 
possible ways, which are both applied to systems in metabolic steady states. In the 
first method the isotopic steady state is used and one calculates the flux distribution 
from the appearance of labelled end-products or from the loss of label in certain pos- 
itions of an intermediate (e.g. Katz and Rognstad, 1967; Raugi et al., 1975; Reich et 
al., 1968; Katz and Rognstad, 1976). The second method is based on the time dependent 
appearance of label in the various metabolites (e.g. Garfinkel, 1970). It allows not only 
the estimation of flux-distributions but also of pool sizes, precursor-product-relations 
and of the number of isotopic compartments of a metabolite. Whereas the first method 
is a fit of an algebraic system of equations to the data, the second one uses linear 
differential equations. Although both procedures are often carried out by computer 
one should distinguish them clearly from modeling. The flux distribution through differ- 
ent pathways in a steady state network does not tell anything about regulatory enzymes, 
nor about regulatory principles, such as feedback interactions, nor about the expected 
change of the flux distribution after the action of an effector. Thus, the isotope techniques 
can identify the state of a steady state system, but cannot predict or explain it. On 
the other hand the building of a realistic model is greatly facilitated by knowledge 
of the magnitudes of branching and merging pathways provided by the isotopic method. 

An essential precondition for the elucidation of regulatory principles is the study 
of the system in different states. One may deal with physiological or pathological states 
such as starvation, refeeding or diabetes. The different states of a system can also be 
brought about by pH-shifts, addition of hormones or other effectors. It is obvious that 
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modeling has no sense if the concentrations of the metabolites are known only for 
a single state of the system. 

4. Different Kinds of Models 

There are two extremes. On the one hand, the model may be intended to give a 
minutely detailed representation of the biological system which includes the properties 
of every component regardless of its role. This approach provides a kind of "mathemati- 
cal photography" of the system. The purpose is primarily a close fit of the data. It 
permits the performance of simulated experiments which may save the experimenter 
considerable time and effort. The weakness of this kind of modeling is its empirical 
nature. Since no reduction of variables is intended the model is still almost as complex 
as the real system. The essential relations are therefore difficult to extract. The other 
extreme constitute idealized skeleton models which are intended to represent basic fea- 
tures of a biological system without direct confrontation with experimental data. Usually, 
there are alternatives and therefore the results cannot be directly applied to the actual 
biological system. Of course there are compromises between the two extremes of model- 
ing by the use of models which are as simple as compatible with the real system. 

The simplicity of a model can be achieved by reduction of the number of variables 
or parameters. The method most widely used, which is also soundly founded mathemati- 
cally, is model reduction by the use of the time hierarchy of the system (see Section 
111.5). Only the essential dynamic variables have to be considered at the time level 
chosen since the faster variables are in a quasi-steady state and slower ones are constant. 
The application of this reduction is not an oversimplification. The error involved can 
be estimated and is the smaller the more pronounced the time hierarchy. Another prin- 
ciple of model reduction is based on the topological contraction of metabolic pathways. 
Adjacent reactions may be lumped into an overall reaction. Whole pathways may be 
substituted by single reactions in this way. For instance, Selkov (1975a) considered 
both the hexokinase and phosphofructokinase as a single phosphorylating reaction and 
the phosphoglycerate kinase and pyruvate kinase reaction as one reaction regenerating 
ATP. The principles of topological contraction have not been investigated in detail. 
The method has to be applied cautiously until the conditions under which the dynamics 
of the system is conserved have been established. A third way of reduction is based 
on the use of descriptive rate laws for the individual enzymes. Figure 1 shows three 
typical shapes of the dependence of enzymatic velocity on substrate concentration. 
Although the underlying physical mechanism may be very complex only a few par- 
ameters suffice for the representation of the entire information content of the curves. 
For instance, the use of the Hill-equation (Fig. lc) requires fewer parameters than the 
model of Monod et aL (1965). Linearization of rate laws with respect to the variables 
is a special simplification (Heinrich and Rapoport, 1974a). Its use is confined to the 
range of low substrate concentrations and requires prior checking of its justification. 

5. Methods of Modeling 

In this section the attempt is made to classify models from the point of view of 
methods used. Such a classification is, of course, somewhat ambiguous and does not 
necessarily represent faithfully the intentions of their originators. An earlier review of 
modeling has been given by Garfinkel et al. (1970) which was grouped according to 
biological objects. 

(a) Data Description 

This kind of modeling is a test of consistency of data and of an underlying mathemati- 
cal structure. There exist two possibilities of adjustment. First, the mathematical struc- 
ture, i.e. the model itself, can be changed and secondly, the parameters of a chosen 
model can be varied. A model can only be rejected if no satisfactory fit with the data 
can be obtained for any of the possible parameter sets. As the number of parameters 
increases it becomes more and more difficult to get a unique best set. 
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FIG. 1. Typical rate functions of enzymes. Three typical shapes of the dependence of the enzyme 
velocity on the substrate concentration are shown in schematical way. The curves can be fitted 
in most cases by the simple expressions given in the figure. A: Michaelis-Menten equation. 

B: Substrate inhibition. C: Hill equation. 

The comparison of the behaviour of the model with the data can be either qualitative 
or quantitative. The qualitative comparison is based on the similarity of curves or on 
certain effects which the model can reproduce. Qualitative comparisons have been used 
in many studies on multienzyme systems (London, 1966; Selkov, 1968; Wright et al., 
1968; Higgins, 1973; Alberghina, 1974; Kothe et al., 1975). The quantitative comparison 
is based on a goodness-of-fit criterion, for instance on the sum of least squares. This 
method is now generally applied in modeling of the kinetics of single enzymes (see 
Wong, 1975). 

A model gains in validity the more data of different kind it describes including the 
metabolites and the enzyme parameters. It is strengthened if it is based on as many 
different conditions as possible. The fitting of a steady state model is a weaker criterion 
than that of a model of time dependent processes since in the latter case many more 
data points have to be described with the same number of adjustable parameters. Table 
1 outlines the different levels of data description that will be considered. 

(i) Single Enzymes.  A survey of models of the steady state kinetics of single enzymes 
is beyond the framework of this review. Most of the problems have been solved such 
as discrimination between alternative models, parameter estimation, goodness-of-fit cri- 
teria as well as the information content of experimental data and the choice of an 
appropriate model (Cleland, 1967; Haarhoff, 1969; Reich, 1970; Bartfai and Mannervik, 
1972; Reich et al., 1972; Ottaway, 1973; Endrenyi and Kwong, 1973; Reich et al., 1974; 
Kurganov et al., 1974; Endrenyi, 1974; Reich and Zinke, 1974; Atkins, 1976; Markus 
et al., 1976). It is generally recommended that for model selection graphical or simple 
computer diagnostica should be used, and non-linear regression analysis for parameter 
estimation. The modeling of single enzymes can be done more rigorously than that 
of multienzyme systems. The reasons for this rigor are that (a) only few parameters 
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TABLE 1. DIrl, VatENT LEVELS OF DATA DESCRIPTION 

Single enzyme 

Comparison 
of rate laws Prediction of Prediction of 
in vitro and steady state time dependent 

in vivo metabolites changes 

Given substrate and Rate law 
quantities effector in vitro 

concentrations and parameter 
in the test values 
tube 

Rate laws of Rate laws of 
all non- all non- 
equilibrium equilibrium 
enzymes and enzymes and 
parameter parameter 
values values 

Measured velocity of flux through all fluxes all fluxes 
quantities the enzyme the enzyme and metabolite and metabolite 

and some concentrations concentrations 
metabolite in the system in the system 
concentrations 
in vivo 

Results rate law rate law steady state dynamics of 
of data in vitro in vivo "rate law" the system 
description and parameter of the whole 

values system 

are involved in many models, (b) the precision of the data is much greater, (c) physical- 
chemical methods provide for independent information concerning reaction pathways 
and parameter values, (d) the data structure is more appropriate for discrimination 
and (e) only one response variable, i.e. the reaction velocity has to be fitted to the 
data. Nevertheless, even for single enzymes there is much doubt that kinetic models 
in general reflect the actual physical process. However, as discussed in Section 111.5 
the detailed kinetic mechanisms of many enzymes (equilibrium enzymes) is of no impor- 
tance either for the regulation in the cell or for modeling purposes. 

(ii) Comparison of  Rate Laws and Enzymes in vitro and in vivo. Often the purpose 
of the kinetic modeling of single enzymes is the application to the conditions in the 
cell. Here different levels may be distinguished. The lowest level is a mere comparison 
of the metabolite concentrations found in the cell with the corresponding Kin- or K~- 
values of the enzymes. This leads usually to the distinction between important and 
unimportant interactions. The rate laws applicable to the conditions in vivo are therefore 
often simpler than those found in the test tube (e.g. Gerber et al., 1974). It is obvious 
that kinetic studies with this purpose should be performed under conditions closely 
resembling those in the cell (e.g. pH, ionic strength). A difficulty often encountered 
in the transfer of in vitro results to the conditions in vivo are the low enzyme concen- 
trations usually employed in vitro. Dissociation-association phenomena which are con- 
centration dependent can alter the kinetics of enzymes such as phosphofructokinase 
(Frieden and Colman, 1967; Hofmann, 1976). The use of permeabilized cells seems to 
be a promising approach to measure the enzyme velocities in situ under conditions 
of high protein concentrations while low-molecular effectors can be changed at will 
(Sols and Marco, 1970; Reeves and Sols, 1973). 

Some enzymes have very complex kinetics and are influenced by many effectors. 
Usually, the simultaneous action of these effectors has not been studied in vitro. Difficul- 
ties arise with enzymes in compartments (e.g. mitochondria) or in membranes. For com- 
partmentalized enzymes the metabolite concentrations in the compartment have to be 
used (Gumaa et al., 1971). A higher level of testing is that of the consistency between 
rate laws in vitro and in vivo as provided by the measurement of the velocities of 
the enzymes and the concentrations of substrates and effectors in vivo (e.g. Barwell 
and Hess, 1972; Wurster and Schneider, 1970; Biicher and Sies, 1969; Reeves and Sols, 
1973). 

For transitions from one steady state to another the analysis is often performed by 
means of the crossover theorem (see Section IV.3.(b)). Discrepancies may indicate the 
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additional action of effectors, compartmentation of metabolites or wrong assumptions 
in the in vitro rate laws. Sometimes it is possible to guess which is the additional 
effector by correlation analysis of the velocity of an enzyme and changes of the metabo- 
lites (Dietzler et al., 1975a,b; Garfinkel et al., 1968). Although it should be possible 
to estimate the best parameter values by computer optimization this has rarely be done 
(but see Garfinkel et al., 1976). One reason is the low accuracy of the values for flux 
and metabolites in vivo, another the small number of experimental points. Oscillating 
metabolic systems seem to be favorable for the deduction of in vivo rate laws of enzymes 
(Giersch et al., 1975). They allow for averaging over several cycles and for the calculation 
of velocities from the slopes of the metabolite changes versus time. An important and 
difficult question is the weighting of different data. The in vitro data on the velocities 
of isolated enzymes are usually quite precise whereas the deduced parameter values 
in the rate laws are not equally reliable. There are also great differences in the reliability 
of the determinations of the metabolite concentrations in the cell. Therefore appropriate 
decisions have to be made whether more confidence should be ascribed to the parameters 
in the rate laws or the in vivo metabolite concentrations. Some metabolites occur in 
very low concentrations or are so labile (e.g. 1,3-bis-phosphoglycerate) that large 
measurement errors are possible. In such cases it is therefore preferable to give more 
credence to the rate law and to adjust the concentrations of the metabolites. On the 
other hand, there are metabolites which can be precisely measured whereas the rate 
law of the enzyme is known to be oversimplified (e.g. PFK-reaction). In such cases 
the parameters rather than the metabolites should be adjusted. Both procedures of 
data correction have been used in an appropriate manner by Achs et al. (1971). However, 
since data correction is somewhat arbitrary it should only be done if the same correction 
may be applied in a number of experiments and if it is plausible to the experimenter. 
If different kinds of corrections are needed for every experiment the model is probably 
wrong. 

Suitable apparent constants are often needed if the model should maintain simplicity 
(Rapoport et al., 1976a; Garfinkel et al., 1968). This includes apparent equilibrium con- 
stants which result from the neglect of hydratation, complex formation of reaction 
partners or the disregard of invariant participants. 

(iii) Prediction of the Metabolite Concentrations in the Steady State from the Kinetics 
of Individual Enzymes. The task to be dealt with is the fit of a model based on indivi- 
dual enzymes with all the metabolites. The aim on this level of data fitting is a represen- 
tation of the whole system. Two possibilities exist for the incorporation of the kinetics 
of single enzymes into a model of the system. In the first method the rate expressions 
of the elementary steps of an enzymatic reaction are used which describe the formation 
and degradation of all enzyme species considered. In the second procedure steady state 
rate laws for the enzymes are used instead (rate law method). In this manner rational 
functions appear in the mathematical model of the whole system. Whereas the first 
method may have the advantage that it is applicable under all circumstances and even 
for short time periods, it has both theoretical and methodical drawbacks. The detailed 
kinetics of the enzymes is usually unknown so that the enzyme mechanism contains 
hypothetical simplifications. The incorporation of the very low concentrations of enzyme 
species poses difficulties in the numerical solutions of the differential equations (the 
differential equations are "stiff"; see Section Ill.5). The rate law method is based on 
the time hierarchical structure of metabolism and has been shown to give results identi- 
cal with the explicit method in its application to real systems (Vergonet and Berendson, 
1970). 

The fitting of the model of a multienzyme system requires the adjustment of the 
enzyme parameters to the steady state concentrations of the metabolites. This can be 
done by the sequential adjustment of the parameters of individual enzymes (Garfinkel 
et al., 1968; Garfinkel and Hess, 1964). However, the information content of the metabo- 
lite concentrations in the steady state does not suffice to fix all the parameter values 
of the model. Some parameters are strongly correlated so that the effect of an increase 



Metabolic regulation and mathematical models 9 

of the Vmax-value of one enzyme on its product can be compensated by an increase 
in the Vmax-value of the subsequent enzyme. It is therefore not certain that the model 
can predict the changes to a new steady state. Furthermore, the possibility of multiple 
steady states with different stability properties has to be considered. The individual 
adjustment of enzymes to the in vivo data does not yield the entire set of the steady 
state solutions of the system and the independent variation of the parameters of different 
enzymes is preferable. The prediction of the global steady state of a system is not 
only a test for the rate laws of the individual enzymes but also for the model structure 
(e.g. of the stoichiometric relations). A model which is capable of describing many steady 
states is a "rate law" of the whole system. However, compared to individual enzymes 
only a few different states are usually studied. 

Rate laws for complex systems can also be obtained experimentally. Wilson et al. 
(1974) proposed a rate law for the respiratory chain which is very simple and might 
be used in a more complex model of metabolism as that of an overall reaction. 

It has been argued that the results of the overall model may depend on the detailed 
rate laws of the constituent enzymes. Although no systematic study of this problem 
has been performed it has been repeatedly observed that the results do not depend 
on details of the kinetics. It has been shown for some cases that the assumption of 
random or ordered kinetics of an enzyme does not affect the overall behaviour of a 
model (Garfinkel, D., personal communication). Ad hoc rate laws have to be used if 
the enzymes have not been characterized sufficiently. These are usually simple first order 
rate laws or Michaelis-Menten functions (e.g. Wright and Gustafson, 1972; Rapoport 
et al., 1976a). The same applies to overall rate laws which are employed for reactions 
which are catalyzed by several enzymes. 

(iv) Prediction of Time Dependent Metabolic Concentrations from the Kinetics of  Indivi- 
dual Enzymes. This is the most rigorous test of the model which is, however, performed 
so far in the least rigorous way. In contrast to the previous approach numerical solutions 
of differential equations must be fitted to the data rather than algebraic equations. 
Since the system of equations is complicated no intuitive prediction of the time depen- 
dent changes is possible and the simulations are a kind of "art" (Garfinkel, 1973) which 
requires skill and experience. Two methods introduced by Garfinkel can be used for 
data fitting. The first One is the variation of the rate law of an enzyme so that the 
influence of effectors on the flux may be correctly described. Owing to the circumstance 
that the fluxes are estimated from the accumulation of the products in some cases 
unreliable fluxes are calculated since one endproduct (e.g. lactate) may be present in 
large excess and can mask small changes. The fluxes may also be calculated from the 
measurements of the individual derivatives of the metabolite concentrations with respect 
to the time (Giersch et al., 1975; Garfinkel et al., 1976) 

dS i ASi 
d t -  At = ~vi j"  (2.1) 

J 

The vii, the fluxes which form and degrade Si, can be obtained in terms of dSi/dt 
as the solutions of a linear algebraic system of equations. However, if branches exist 
the number of fluxes may exceed that of metabolites and therefore not all fluxes can 
be determined. Of course, isotope techniques performed simultaneously with metabolic 
transitions are very suitable to calculate the fluxes (Stucki and Walter, 1972). The second 
method for data fitting (Achs and Garfinkel, 1968) starts with an important enzyme 
(e.g. phosphofructokinase) and uses initially a simple arbitrarily chosen rate law for 
the removal of products. The time dependent changes of the substrates and effectors 
are fed into the computer and the mechanism is varied until the products yield the 
desired time function. Then the enzyme mechanism is fixed and the adjacent enzyme 
is modeled until the intermediates give the right response. This procedure is continued 
until one obtains rate laws for all enzymes which lead to the expected behaviour of 
all metabolites. 
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Both procedures are purely empirical and lead only to non-unique solutions since 
the mechanism and parameters of only one enzyme are changed while all others are 
held fixed. The time dependent changes of a metabolite are considered as a function 
of only few enzymes, usually those preceding and succeeding it, whereas the dynamics 
of the metabolite could be the result of the complex interactions in the whole system. 

A general procedure which in principle is able to lead to unique solutions is to 
integrate the whole system of differential equations in an iterative manner by trial 
and error. This procedure has been extended for automatic parameter estimation 
(Hemker, 1972; Curtis and Chance, 1972; Curtis, 1976) but seemingly has not been 
applied so far to a concrete case presumably because of the long computer time needed 
for the many integration steps. It has also been proposed to use hybrid computers 
so that the analog computer does the integration and the digital computer does the 
parameter optimization (Gibson and Parkhurst, 1968). 

It is not easy to reject a model. Qualitative discrepancies which violate logic consist- 
ency such as incompatible changes of metabolites and fluxes are more important than 
quantitative differences (see Section IV.3.(b)). In some models a weak point is the practice 
to fix some metabolites at certain values or to introduce time dependent metabolites 
or time dependent parameters from the beginning (Park and Wright, 1975). Such given 
input functions constitute the boundaries of the model; their use limits the description 
to a subsystem. The introduction of time dependent input functions is justified if they 
are independent of the internal state of the system or so slow that they can be regarded 
as slow drift parameters. The use of time dependent input functions indicates that the 
dynamics of the system is not solely explained by its internal motions. The question 
arises whether the model has not been confined too narrowly. 

(b) Analysis of  the Properties of  a Model 

The present section deals with the next step of abstraction, i.e. with the investigation 
of the properties of a model. One general procedure involves the variation of the par- 
ameters of the model. The parameters which can be changed are not only enzyme 
constants such as Kin- and Vma x but also conservation quantities and input functions. 
By means of the sensitivity analysis (Anderson et al., 1971) the influence of small (differ- 
ential) changes of parameters is investigated. This allows also for the calculation of 
the control matrix and of control strengths (Section IV.2.(c)). The essential information 
obtained is the identification of the enzymes which have the strongest influence on 
steady state flux and metabolite concentrations. In time dependent processes the differen- 
tial change of a parameter permits the identification of the time limiting enzymes, i.e. 
of those which influence strongly the transition time between two steady states (Section 
IV.4). Despite the fact that differential changes may not correspond to physiological 
relevant states they permit the clarification of the properties of the model. Non-differen- 
tial changes are appropriate to predict the consequences of enzyme deficiencies or over- 
productions (Wright and Gustafson, 1972; Wright and Park, 1975; Rtdenbeck et al., 
1975; Kothe et al., 1975; Rapoport et al., 1976a). 

Conclusions may be drawn with respect to the regulation of a system from the analysis 
of the changes of the parameters necessary for a satisfactory description of the experi- 
mental data (e.g. blood preservation conditions, Rapoport and Heinrich, 1975). Par- 
ameter changes can be useful for the comparison of pathways in different animal species 
and may lead to the elucidation of evolutionary adaptation mechanisms (Rapoport et 
al., 1976a; see Section V.l.(b)). 

The change of conservation quantities, e.g. that of the adenine nucleotides may show 
the consequences of a limitation of pools. 

Nonlinear differential equations possess a great manifold of solutions and the charac- 
ter of the solutions depends strongly on the choice of the parameter values. Thus, 
the trajectories of a system which originally converged to a stable steady state may 
display a limit cycle in response to a variation of a parameter (Section III.4). In most 
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cases it is necessary to vary systematically the parameters to see which possibilities 
for the behaviour of a system exist. 

One may also change the structure of a model, e.g. by alteration of enzyme 
mechanisms, consideration of additional pathways or enzymatic reactions, incorporation 
of further feedback interactions, etc. This procedure allows, for instance, the elucidation 
of the role of pathways or of interactions between effectors and enzymes. By variation 
of the model structure its essential invariant features become apparent. It is also useful 
for extensions of the model to pathways in other biological systems. 

Both structural and parameter changes of the model serve to analyse the space around 
the solution which has been fitted to the data. They are essential for the elucidation 
of the regulatory principles of a metabolic system, which would be difficult to obtain 
without mathematical models since the variation of parameters or even of the structure 
in a real biological system is possible only to a limited extent. 

(c) Idealized "Skeleton" Models 

An idealized model serves the aim to represent in the simplest manner the dynamic 
features of a system. Idealized models also serve as an object of detailed mathematical 
investigation since they are less intractable than detailed ones. The essential feature 
which is modeled may be, for example, the occurrence of oscillating behaviour of the 
metabolites (Higgins, 1964; Selkov, 1968; Goldbeter and Lefever, 1972), the constancy 
of the ATP-level under load (Selkov, 1975a,b; Reich et al., 1976) or switching on and 
switchifig off of complementary pathways (e.g. Pasteur effect, glycolysis-glycogenolysis; 
Heinrich, 1976). The idealized models are not confronted directly with experimental 
data but represent abstractions of a large body of observations and experiments. 

Since such models cannot be easily tested by experimental data the main criteria 
for their acceptance are biological plausibility and their ability to simulate teleonomical 
behaviour. There are two possibilities to arrive at a skeleton model. First, the idealized 
model may be extracted from a detailed one which was able to describe actual experi- 
mental data. The simplification can either be arrived at by the use of the time hierarchy 
or by topological contraction. A second approach which may be considered the reverse 
of the preceding one is to set up an idealized model as a preliminary step to a more 
detailed description. It is particularly appropriate if few details such as rate laws and 
parameter values of a metabolic system are known. In such a case one uses as a back- 
ground the stoichiometric map, on the basis of which a model with shortened pathways 
and arbitrary rate laws is set up. Such a model may clarify the understanding of the 
regulation of a system and may pinpoint the areas of further experimentation. It may 
also be used to test the intuitive description of metabolic events. 

There are, however, serious limitations to the usefulness of idealized models. They 
stem mostly from the lack of data fitting. Even if the model describes correctly the 
dynamics of a biological system the parameters used may not correspond to reality. 
Furthermore the models are not unique despite the fact that they contain in general 
few parameters. Comparison with experimental data is a much more stringent criterion 
for the correctness of a model. There are attempts to do so with respect to glycolytic 
oscillations (Higgins et al., 1973; Richter et al., 1975). Finally, although it is tempting 
to regard the idealized models as general representations of pathways of various biologi- 
cal systems, such an assumption has to be qualified on account of a highly specialized 
nature of the metabolism of some types of cells. 

III. MATHEMATICAL DESCRIPTION OF THE 
DYNAMICS OF METABOLIC SYSTEMS 

1. The Differential Equations 

The mathematical description of the dynamics of metabolic systems is performed 
by means of a system of differential equations derived from a consideration of the 
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fluxes which produce or remove the metabolites 

dSi i - cijvj (i = 1 . . . . .  n). (3.1) 
dt ~=~ 

Here S: signify the concentrations of the metabolites, n their number, v~ the activities 
of the enzymes participating in the metabolic pathway analyzed, t the time and r the 
number of the reactions in the system. The coefficients c~j are the elements of the stoichio- 
metric matrix. They indicate which fluxes influence the metabolites. An element c~ is 
positive if the metabolite St is the product of reaction vj and negative if it is the substrate, 
otherwise it is zero. The stoichiometric matrix contains therefore the information on 
the structural network, i.e. the "topology" of the enzyme system. The validity of the 
differential equations depends on the assumption that the metabolites may be considered 
to be equally distributed in the cellular space. It means that effects are not considered 
such as diffusion processes resulting from space dependencies in the metabolite concen- 
trations. Secondly, it is presupposed, that the enzyme activities obey steady state rate 
laws, i.e. that all enzyme-metabolite complexes are considered to be in the steady state, 
so that they do not enter explicitly in the dynamical description of the enzyme system. 
It will be shown in Section III.5.(b).(ii) that this approximation is justified if the concen- 
trations of the intermediate metabolite complexes are very small as compared with 
the concentrations of the metabolites. In this case the catalyzed reactions obey the 
following rate equations 

vj = V+ -- V-j = (PJ 1-Ii Si - P-J ~i Si)  (3.2) 
substrates products 

The multiplication is performed in the first term over all substrates and in the second 
term over all products of the enzyme Ej. The fluxes depend not only on the concen- 
trations of the metabolites but also on the kinetic parameters Pk, such as K,,-values 
of substrates and products and inhibition or activation constants of effectors. The kinetic 
constants pj and p_j are proportional to the concentration of the enzyme Ej and in- 
directly proportional to the K,,-values of the reactants. The factor Rj(Si, pR) contains 
all the information about the special kinetic properties of the enzyme. It will be called 
the regulating factor. In general it will depend not only on the concentrations of the 
immediate partners of the reaction but also on the concentration of other metabolites 
which act as effectors of the enzyme. The structure of the regulating factor may differ 
widely for various enzymes of one metabolic pathway. 
By use of the equilibrium constant qj and the mass action ratio F j, 

[ I  Si 
k j prodim 

- , F j -  ( 3 .3 )  

qJ k_j I-I s~ 
i 

substrates 

the rate Eqn. (3.2) may also be written in the following form 

R v j =  k s ~i Si 1 -  q j j  j. 
substrates 

(3.4) 

Since at equilibrium v~ = 0, the mass action ratio in this case does not depend on the 
regulating factor. This has important consequences for the mathematical description 
of enzyme pathways that involve very fast reactions the reactants of which are near 
to equilibrium. The special kinetic mechanism of such enzymes is of no importance for 
the regulation of the pathway (see Section 111.5). 
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Equation (3.1) constitutes a system of ordinary first order differential equations in 
which the fluxes depend on the metabolite concentrations and a set of kinetic para- 
meters. Generally we shall write it in the following abbreviated manner, 

dSi ( i , j  = 1 . . . . .  n) (3.5) 
dt -- f ' (S j 'Pk)  = fi  + - f~- ,  (k = 1 . . . .  ,m)  

where m is the number of the kinetic parameters, f~+ summarizes all fluxes which produce 
the metabolite Si (inward flux) and f~- all fluxes which remove it (outward flux), f~ 
is called the net production rate of the metabolite Si. In the case that the enzyme 
concentrations and the kinetic parameters are invariant with time the right side of 
Eqn. (3.5) does not depend explicitly on time. Such equations are called autonomous. 

The state of a system at a time t is defined by the metabolite concentrations at 
that time which may b e  described in a compact manner by the vector 
S(t) = (Sl(t) . . . . .  S,(t)). The totality of possible states form the n-dimensional state space 
R", If the parameter values are fixed the solutions Si(t) form curves in the state space, 
the so-called trajectories which are functions of the initial values S~(to). In the case 
that the system contains only two metabolites $1 and $2 the state space degenerates 
to a phase plane R z. The totality of all parameter values (Pl . . . . .  Pro) form the m-dimen- 
sional parameter or control space pro. 

The rate equations are in general non-linear functions of the metabolite concentrations 
S~ and the parameters PR. With reactions involving more than one molecule the non- 
linearity is a direct consequence of the law of mass action. Therefore, the differential 
Eqns. (3.5) become also nonlinear and generally, their solutions cannot be given in 
a closed analytical form. There are three ways to deal with such equations 

(1) to limit their solution to cases in which linear approximations are applicable 
(2) to limit oneself to qualitative statements on the dynamic behaviour of the system 
(3) numerical integration with specified parameter and initial values. 

A survey of the steady state equations which are commonly employed in enzyme 
kinetics shows that the regulating factors always constitute a special type of function, 
namely ratios between two polynomials in the metabolite concentrations (Wong, 1975). 
This fact can be used to some advantage for the mathematical treatment of Eqns. (3.5), 
especially for time independent problems, since the solution procedure may be reduced 
to the determination of the roots of polynomials. 

In a closed metabolic system without material exchange with its surroundings the 
sum of all metabolite concentrations (mass/volume) is constant and the following equa- 
tion applies 

d-t \ i~l  j=l (3.6) 

Since this equation is valid for all vj the stoichiometric matrix of the closed system 
must fulfil the condition 

~ , c i j  = 0. (3.7) 
.i=1 

Although metabolism as a whole is an open system, conservation equations of the 
type of Eqn, (3.7) may hold in a subsystem for groups of metabolites, the total concen- 
tration of which does not change with time. The number of differential equations is 
reduced by the number of conservation quantities which exist in the system considered. 

2. Steady States and Stability 

Metabolic systems generally are in a steady state which is defined by constant values 
of the flux and of the metabolite concentrations. For all intermediates the outflux equals 
the influx so that the rate of their net production becomes zero. Thermodynamically, 
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steady states are defined by minimum production of entropy (Glansdorff and Prigogine, 
1971). Obviously a steady state must be distinguished from that of an equilibrium with- 
out net flux which is only possible in a closed system. 

The application of the steady state condition to the differential Eqns. (3.1) and (3.5) 
yields 

dS2i 
= 0 = f~(S ° . . . . .  S ° ;Pk) = ~, C,jVj, (3.8) 

dt j=l 

which is an implicit equation system for the steady state concentrations S O . Generally, 
this equation is non-linear and must be solved numerically. The solution of a system 
of non-linear equations may be non-unique, i.e. there exist several steady states at one 
set of parameters. 

Steady states may be dynamically stable or unstable. General definitions of stability, 
first given by Ljapunov (1893) are rather complex. (For a general definition of stability 
see Hahn, 1967; Rosen, 1970.) We shall limit ourselves to the following two definitions 

(a) a steady state S O is locally asymptotically stable if the system returns eventually 
(t---* oc) to its steady state after a small perturbation (Si = S O + ai). 

(b) If all trajectories lead to the steady state S O from any kind of perturbation it is 
globally asymptotically stable. It should be noted that only the stable steady states 
of a model can describe steady states of a real biological system. 

Generally it is difficult to assess the global stability of a system. It is much easier 
to decide whether it is locally asymptotically stable by the following method. One 
expands the right sides of the differential Eqns. (3.5) in the neighbourhood of the steady 
state in a Taylor series. Since only infinitesimal deviations from the steady state have 
to be considered only the linear terms are of interest: 

dt k=l ~ k  ak = k=l Aikak" (3.9) 

A~k is the so called Jacobi matrix of the system. The linear differential equations have 
the well known solution 

tri(t ) = ~" B ke ~'-'°) (3.10) 
k = l  

where t o denotes the initial time of perturbation. 2k are the eigenvalues of the Jacobi- 
matrix. They are calculated from the characteristic equation of the system 

D e t l A i k - - ~ i k [  = 0  , 61k= {~  i=/=k i =  k'  (3.11) 

which represents a polynomial of the n-th degree 

an2 n + a , -12 "-~ + . . .  + all. + ao = 0. (3.12) 

The coefficient ao is identical with the determinant of the Jacobi-matrix (DetlAik[). 
If it is zero, at least one of the eigenvalues is also zero. This is the case if some of 
the Eqns. (3.9) are linearly dependent on each other. The coefficients B/k are functions 
of the kinetic parameters of the enzymes and of the initial values a~(to). A steady state 
is asymptotically stable if all the eigenvalues, i.e. the roots of the characteristic Eqn. 
(3.12) have only negative real parts. In this case Eqn. (3.10) contains only terms which 
subside with time and disappear at t ~ oo. If one or more of the solutions of the 
characteristic equation are zero, the system exhibits a critical behaviour. Statements 
on its stability can only be made on consideration of the quadratic or higher terms 
of the expansion of Eqn. (3.5). Since for the analysis of stability only the signs, not 
the exact values of the roots are of interest, the solution of the characteristic Eqn. 
(3.12) is not required. The signs may be easily derived from its coefficients ai. Mostly 
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the criteria given by Hurwitz and Routh are applied to prove that the polynomial 
has only roots with negative real parts (see Hahn, 1967). Stability requires that the 
coefficients fulfil the following conditions: 

for two metabolites : 
a2 > 0, al > 0, ao > 0 (3.13) 

.for three metabolites: 

a3 > O, a2 > O, ao > O, a2al - asao > 0. (3.14) 

Generalized statements on the stability of steady states can be made only for special 
types of systems. For example, Hearon (1953) showed that closed systems consisting 
of first order reactions are stable and cannot exhibit damped oscillations, i.e. that all 
eigenvalues are real and negative. In pseudo first order systems damped oscillations 
may occur but the steady states are always stable (Higgins, 1967). 

3. Two-Component Systems 

In some cases the time dependent behaviour of a metabolic system may be sufficiently 
described by a mathematical model, which contains only two state variables (see Section 
III.5). In the following section we apply the methods explained in the preceding section 
to the analysis of such systems. They are described by the differential equations 

dS1 
dt = f l (Sl '  S2 ; pk) (3.15a) 

dS2 
d~- = f2(S1' S2 ;pk). (3.15b) 

The dynamical investigation of such systems is much simpler than those of higher 
degree since the motions can be analysed in a two-dimensional system of coordinates. 
By eliminating the time t from Eqns. (3.15a,b) we obtain the differential equation 

dS2 _ f2 ($1 ,  S2 ; Pk) (3.16) 
dS1 fl(S1, $2 ; Pk)' 

the solution of which are the trajectories $2 ($1) in the phase plane. For the qualitative 
discussion of the form of the trajectories two curves, S~ ($1) and S~ ($1), are of 
particular importance which are defined by the zeros of the numerator and denominator, 
respectively, of Eqn. (3.16). 

f l ( S1 ,  S~) = 0, f2($i, S~) = 0. (3.17) 

The direction of the trajectories on the Sl2-curve are parallel to the S2-axis and 
those on the sn-curve to the Sraxis (see Fig. 2). The curves are called quasi-steady 
state lines; the steady state lies at their intersection. 

Linearization of the Eqns. (3.15a, b) in the neighbourhood of a steady state yields for 
small perturbations a~ and t~ 2 

doh t~fl t~fl (3.18a) 
dt = ~-~i al + ~s-22 a2 = a,i~1 + ~120"2 

do'2 Of  2 

dt - 0S1 al + 

The eigenvalues of the Jacobi-matrix 

;~2 _ ( a l l  + a22)2 

which has the two solutions 

tr 
41,2 = ~- ± 

~f2 O" 
~ 2  2 ~--" a210"l 3ff a220-2. 

are determined by the equations 

+ ( a l i a 2 2  --  alEa21 ) ----- 0, 

X / ~ - A  

(3.18b) 

(3.19) 

(3.20) 
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4 

sl  

FIG. 2. Two-dimensional (St, $2) phase plane. The arrows indicate the direction of the motion 
on the quasi-steady state lines Slz(Sl) and S~(SO. 

where tr is the trace and A the determinant of the Jacobi-matrix: 
tr = a l l  + a22,  m = a l i a 2 2  --  ct12a21. 

The equation system (3.18) has the following solution 

C1a12 e~.,(t_to) .q_ c 2 e 22(t-to) 
Ol( t )  - 21 - a l l  

(3.21) 

(3.22a) 

a2(t)  = Cl e "h~t-t°l + c 2 a 2 ~  e ~2~-t°~. (3.22b) 
'~'2 - -  a 2 2  

For t = to Eqns. (3.22a,b) become a linear system for the determination of the coeffi- 
cients cl and c2 from the initial perturbations al( tO) and a2(to). 

It follows from Eqn. (3.20) that the signs of the eigenvalues and therefore the stability 
behaviour of the systems is defined uniquely by the two terms tr and A which are 
generally complex functions of all kinetic parameters. Figure 3 shows the plane defined 
by tr and A. It is easily recognized that the real parts of both eigenvalues are negative 
only in the fourth quadrant, in which A > 0 and tr < 0. Only for parameter values 
for which the corresponding (A, tr) values lie in this domain the corresponding motion 
is stable. The axes of the coordinates and the line 

tr 2 = 4A (3.23) 

divide the (A, tr) plane into six domains, in which the character of the eigenvalues, 

t¥ 

A 

Fro. 3. Regions in the (A, tr)-plane with different dynamic characteristics in the neighbourhood 
of the steady state. I: stable node; II: stable focus; III: unstable focus; IV: unstable node; 

V, VI: saddle point. 
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I)lr~A>o l)tr,O,A>O l)te~'O,A>o E)tc,.O,A,.O Z~tr~A~O 
tra > # A tr z < # A tr z "~ ~ A tr* 7, k A  A,A~ r ~ l  M l h  

FIG. 4. Types of motion in the neighbourhood of steady states corresponding to the six domains 
of the (A, tr)-plane (see Fig. 3l 

and therefore the type of the resulting motion, differ from each other. Figure 4 gives 
a summary of the possible types of motion. 

4. Parameter Dependence of the Dynamics of 
Metabolic Systems; Bifurcations 

The variation of the values of the parameters yields both biological and mathematical 
insight in the properties of the model (see Section II.5.(b)). For the analysis of the 
parameter dependence of the model such combinations of parameters are of particular 
interest which produce changes of the stability characteristics of steady states. Such 
parameter combinations are called bifurcation points. At first we shall discuss the two- 
dimensional case. As pointed out in the foregoing section only the trace and the deter- 
minant of the Jacobi-matrix and not parameter values per se determine the stability 
of the system. It is therefore convenient to analyse the parameter changes not in the 
entire m-dimensional parameter space, but in the two-dimensional (A, t0-plane. Changes 
of the parameters will produce a curve in the (A, t0-plane. If it does not exceed the 
limits of the six domains described (see Fig. 3), the stability characteristics remains 
unaffected. This holds also for the case of the crossing of the dividing line defined 
by tr 2 = 4A between the domains I and II and III and IV, respectively. There occurs 
merely a transition from a focus to a node (see Fig. 4), Qualitative changes may be 
expected if (1) the axis tr = 0(A > 0) or (2) the axis A = 0 are crossed. 

(1) In the first case (Hopf-bifurcation) the stability characteristic changes since the real 
parts of the eigenvalues change signs (see Eqn. (3.20)). If they become positive a 
stable focus becomes an unstable one (see Scheme 1). If there can be found in the 
phase plane a closed line C around the unstable steady state which is transversed 
by all trajectories from outside it is clear that the variables can never reach constant 
values. Hopf proved in a classical paper that under such conditions the trajectories 

stt~e focus onsto/~ ~ i  I/m//O¢/e 

Scheme 1. 
st 

J.P,B.  32 I J~ 
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~ states 

/ bifurcation po~t 
( a . o )  

s~ss ~S 
~.,~'~" ~sto~e stwody states 

Pc P 

Scheme 2. 

merge to a closed trajectory which is called a limit cycle (Hopf, 1942). Moving on 
the limit cycle the system exhibits undamped oscillations. In a linear approximation 
which is valid for small amplitudes of this motion, the duration of the period T 
of the oscillations is equal 

2n 
T -  Im(2)" (3.24) 

Im(2) represents the imaginary part of that eigenvalue the real part of which became 
positive at the bifurcation. 

(2) In the second case, if the axis A = 0 is crossed, the number of steady states changes. 
This behaviour is shown in Scheme 2. With increase of a parameter (p) a stable 
and an unstable state approach and cancel each other at a critical value (Pc) at 
which A = 0. 

Such considerations apply also for systems of higher dimensions with some modifica- 
tions. The condition for the emerging or disappearance of pairs of steady states at 
A = 0 (A = DetlAikl) remains unchanged. For the case of the Hopf bifurcation the condi- 
tion tr = 0 which indicates the change of the sign of an eigenvalue has to be replaced 
by more complicated conditions, e.g. the Routh criterion. 

(a) Simplified Biochemical Systems with Bifurcation Properties 

The theoretical considerations may be illustrated by two simplified biochemical 
examples. They show both the bifurcation of a stable steady state into multiple steady 
states as well as the emergence of an unstable steady state which is surrounded by 
a limit cycle. 

(i) Feedback Activation in a Two-Component System. The essential feature of the 
system considered in this section is an enzyme which is activated by its product. The 
system originates from the study of oscillations in glycolysis (Higgins, 1964; Selkov, 
1968, see also Section V.4). In the system of reactions, shown in Scheme 3 it is assumed 
that the enzyme which catalyze the reversible reaction $1 ~ $2 is activated by the prod- 
uct $2 and that all other enzymes catalyze irreversible reactions. 

I k3 I " ~ " \  

Scheme 3. 

If one presupposes that all enzyme activities depend linearly on the substrate concen- 
trations and that the input Vo of the metabolite St is constant one arrives at the following 
differential equations 

dS~ 
dt = Vo - (klS1 - k.lS2)(1 + cS$) - k3S1 = f I ( S i S 2 )  (3.25a) 
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d S  2 
d t  = ( k l S l  - k - i S 2 ) ( 1  -I- cS~)  -- k2S  2 = f 2 ( S l ,  S2) , (3.25b) 

c and q are the activation parameters of El. It will be shown that this system may 
become unstable at certain parameter values and that it may have several steady states 
for one set of parameters. 

For the quasi-steady state lines one obtains: 

St ! = V o + k_lS2(l + C~) 
k1(1 + cS1) + ka 

Sl ~ = S2[k 2 + k_l(1 + cS~)] 
k~(l + cSl) 

Furthermore one gets by simple differentiation of the net production rate defined in Eqns. (3.25a, b) 

k2cq5"~ 
tr = - k t ( l  + cS~) - (k-i + k2 + k3) - k-I  cS~ + ( l / a ] c  ~-------~ ; +  

A k2kacqS~ 
(1 + cS3) 

By use of the steady state condition 

- -  + kak_lcS ~ + k2k 3 + kak_ 1 + ktk2(1 + cS~). 

(3.263) 

(3.26b) 

(3.27a) 

(3.27b) 

S~($2)= S~(S2) (3.28) 

the variable S, may be eliminated from Eqns. (3.27a, b) so that both tr and A can be expressed only as 
functions of the parameters Pk of the system. After that, the equations tr (Pt)= 0 (A > O) or ~ P t ) =  0 
which define the bifurcation points may be used to calculate the value of one parameter as a function of 
the others. Thus, one obtains for the activation parameter c at tr -- 0 

with 

and, at A = 0, 

with 

k-lka k2(l 4- b ) ' l f  (a 4- b)/dj I + + + a (3.29) 

(q " l)k2 - 2(ki + k - O -  ka ; a  kt -V k - l  + kz + ka (3.30) 
a =  2(kl + k_t) , b =  2 kl + k - t  

c~2 (x ~-~Y)~( l + k-~ka ~,, f 
• = - -  klk2 + 1(1 + x + y ) - I  , (3.31) 

(q --' 1)k2k3 - 2k-tka - 2klk2 / 2  k_ ik3 + klk2 + k2ka 
x =  2(k-lk3 + ktk2) ' Y =  X/x - k_lk3 + ktk2 

(3.32) 

Since all kinetic parameters are real numbers, changes in the signs of tr and A can only occur if the values 
orb and y which are determined by Eqn. (3.30) and Eqn. (3.32), respectively are also real. Thus, from the condition 
that b is real 

o 2 • kl + k-  1 + k 2 + k 3 
kl + k_l ' (3.33) 

one obtains the inequality 

( ~ ) ( ;  " k2+ka  ) k-2=qt~, (3.34, 
q t '>  1 + 2  1 + ~-~1 ~--k-~ + 1 +k2  

and from the condition that y is real 

k_,k  3 + kxk2 + k2k3 x 2 > (3.35) 
k_lk  3 + ktk2 

the inequality 

qA> 1 + \k3 + 1 + 
k2k3 1) = qo A. (3.36) 

k-lk3 + klk2 

From the inequafities (3.34) and (3.36) it follows that the activation constant q must exceed the values 
qg and qg for the appearance of instabilities or multistationary states, respectively. The faster the enzyme 
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FIG. 5. Parameter regions with different stability properties of the reaction system represented 
in Scheme 3. Parameter values: k~ = 1, k_ ~ = 0, k2 = 5, k3 = 1, q = 3. For parameter values 

c and v0 within the hatched area the steady states are unstable. 

E~ the greater must be the activation constant q. If the reaction catalyzed by E~ is near equilibrium 
(k~, k_ l >> k2, ks) a unique stable steady state exists. 

Figure 5 shows the lines c~,2tf as functions of Vo for parameter values kl, for which inequality (3.34) but 
not (3.36) is satisfied. Multiple steady states may be excluded. On crossing into the domain bounded by 
c~ r and c[ f the steady state becomes unstable and a limit cycle arises. 

Figure 6 shows in the (St, S2)-phase plane the quasi-steady state lines S] and S u and numeric integrations 
of the differential equations (3.25a,b). In Fig. 6a the parameters were taken from the stable domain of the 
(vo, c)-plane in Fig. 5. The trajectory is a spiral and approaches the steady state with time. In Fig. 6b the 
parameter values were taken from the unstable domain of the (oo, c)-plane in Fig. 5. The trajectory approaches 
a limit cycle on which the system exhibits undamped oscillations. 

Figure 7 shows the lines ~,2 as a function of Vo for parameter values which only satisfy the inequality 
(3:36). Since for these lines A = 0, the number of steady states changes by two when they are crossed. Within 
the domain enclosed by c~ and c2 A there exist three steady states. Figure 8 shows the steady states S o and 
S O as a function of the input Vo for different values of c and with fixed parameter values k~. In Fig. 9 
is shown the behaviour of the steady states as a function of the input (vo) at different values of kt and 
k_ ~. It may be seen that with acceleration of the reversible reaction the steady state becomes unique. 

For  the special case of q = 2, k3, k_ 1 = 0 the reaction mechanism may be written 
in the following manner 

Input vo ) S1 

S 1 k l ) s  2 

S1 + 2S  2 bkl) S2 

S2 k~ ) output. 

It is equivalent to the reaction mechanism dealt with by Prigogine and Lefever (1968) 
and Tyson and Light (1973). They demonstrated that in a system of two components, 
which enter maximally trimolecular reactions only this type of limit cycle oscillator 
can exist. 

(ii) Feedback-Inhibition in an Unbranched Pathway. Since the discovery of feedback- 
inhibition by endproducts in the biosynthetic pathways of amino acids (Umbarger, 1956; 
Gerhart and Pardee, 1962) it has been pointed out that this type of regulation is optimal 
for the stabilization of steady states of unbranched enzymatic systems (see, for example, 
Savageau, 1974). If the feedback inhibition is sufficiently strong the rate of synthesis 
of the end product becomes nearly independent from the input into the metabolic chain. 
A detailed mathematical analysis of such systems has shown, however, that they may 
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~G. 6. Trajectories of the reaction system represented in Scheme 3 (a) Vo = 7.5, c = 1.0; the 
steady state is a stable focus. (b) Vo = 8.0, c = 1.0; the steady state is an unstable focus and 
the trajectories approach a limit cycle. The other parameter values are the same as given in 
the legend to Fig. 5. The dotted curves represent the quasi-steady state lines defined by eqns~ 

(3.26a,b). 
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Fro. 7. Parameter regions with different numbers of steady states for the reaction system repre- 
sented in Scheme 3. Parameter values: kl = 1, k_t = 0, k2 = 5, k3 = 5, q = 3. Within the 
hatched area the system exhibits three steady states for each set of the parameters c and Vo. 

In the other parameter region the steady state is unique. 

exhibit a periodic behaviour of the concentrations, if a critical degree of inhibition 
is exceeded. The steady states of such systems become dynamically unstable (Morales 
and McKay, 1967; Viniegra and Martinez, 1969; Walter, 1970; Higgins, 1973; Hunding, 
1974; Savageau, 1975; Tyson, 1975). The tendency towards instability grows with increas- 
ing size of the system. In the following section it is shown that the occurrence of oscil- 
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I~G. 8. Occurrence of multiple steady states in the reaction system represented in Scheme 3. 
The parameter values are the same as given in the legend to Fig. 7. Vo and c are varied. 



Metabolic regulation and mathematical models 2.3 

~ '  I I I I I I I I I 

I I I I I I I I I 

FIG. 9. Disappearance of the multiplicity of steady states by acceleration of the back activated 
reaction Of Scheme 3. kt and  k_ t are varied while the equilibrium constant  kffk_ 1 remains 

constant.  The other parameters are k2 = 5, ks = 10, c = 1, q = 6. 

lations in linear systems with feedback-inhibition may be explained within the framework 
of the theory of bifurcations. 

The system considered is depicted in Scheme 4. 

SI kl ~ $ 2 ~  k a ~ kn_l - " ~ n  k n 

S c h e m e  4. 

For the sake of simplicity it is presupposed that all enzymes catalyze first order 
reactions, with the exception of the first enzyme, which is inhibited by S.. For its activity 
the following relation is assumed 

V 
Vo = 1 + pS i"  (3.37) 

One obtains the differential equations 

dSi 
dt 

V 
k l S l  (3.38a) 

1 + p ~  

__dS~ = k~_ t S i - i  - kiSi 
d t  

(i = 2 . . . . .  n). (3.38b) 

The expressions for the steady state concentrations are 

k i - l s  ° ( i = 2 ,  . ,n)  S O -  ki "" 

and 

Vo - k , S  ° - p k , ( S ° )  ~+~ = O. 

(3.39a) 

(3.39b) 

By means of a transformation of the variables (Hunding, 1974) the nonlinear Eqn. 
(3.39b) may be written in the manner 

/) q c,¢c-1 (3.40) 
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From it c, and therefore S O may be calculated by numerical methods. For the analysis 
of the stability behaviour of the system solutions of the differential equations (3.38a, b) 
are investigated in a region close to the steady state. 

One obtains the following characteristic polynomial 

N ( k , + 2 ) + c - I  l~I - - q  k~ = 0. (3.41) 
i = l  C i=1 

Simple solutions can only be found if all ki are equal (ki = k). In this case one obtains 
for the eigenvalues 

2 , =  - k + k e x p  i + ~ m  q C -  (3.42) 
c 

They lie in the plane of complex numbers on a circle with the centre ( -  k) which is 
located on the negative real axis and has the radius 

k "/o c - 1 r (3.43) 
V c 

From Eqn. (3.42) it may be seen that the stability of the system depend critically 
on the location of the eigenvalue ;to. Thus, one obtains from Eqn. (3.42) the following 
condition for the emergence of an unstable steady state and a limit cycle 

q > cos"(n/n) = qo- (3.44) 

Given a chain length of n metabolites limit cycles occur only if the feedback inhibition 
is sufficiently strong. For c >> 1 (this is the case if one of the parameters on the right 
side of Eqn. (3.40) is very large), the expression c/(c - 1) tends to one and the condition 
(3.44) for the instability becomes independent of the steady state concentrations of the 
metabolites 

1 
q > - -  = q~. (3.45) 

cos"( /n) 
This simplified condition (3.45) has been first derived by Viniegra and Martinez (1969). 

Table 2 shows the critical inhibition parameter qb for different chain lengths n. It may 
be seen that q~ becomes smaller as n increases. Thus the tendency for a limit cycle 
to occur increases with greater feedback inhibition as well as with growing chain length. 

TABLE 2. CRITICAL FEEDBACK-INHmlTION PARAMETER qb 
DEFINED BY FORMULA (3.45) m A FUNCTION OF THE CHAIN 

LENGTH rt OF AN UNBRANCHED METABOLIC PATHWAY 

n 3 4 5 6 7 8" 9 10 

q~ 8.0 4.0 2.9 2.4 2.1 1.9 1.7 1.6 

If the kinetic constants k~ differ from each other the stability has to be checked 
by means of the Routh-Hurwitz-criterion. We shall limit ourselves to the case n = 3. 
The characteristic equation is then, from Eqn. (3.41), 

;t3 +;t2(k 1 + k 2 + k 3 ) + ; t ( k t k 3 + k 2 k 3  + k l k 2 ) + k x k 2 k 3  1 + q - -  = 0. (3.46) 

According to the Routh-tturwitz-criterion the system becomes unstable if 

(kt + k2 + k3)(kak3 + k2k3 + klk2) > ktk2k3 1 + q (3.47a) 

o r  

c f 2  kt k2 k2 k3 ki k3~ 
+ 7 - + 7 - + 7 - - + 7 - - + 7 - + 7 - - J = q 0 .  (3.47b) 

q > c--Z- i - t~2 KI K3 K2 K3 KI 
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Since c is independent of kt and k2 (see Eqn. (3.40)), -the right side of the inequality 
(3.47b) becomes minimal if all ki are equal. The stability region of the system increases 
therefore if the rate constants differ from each other. This has been shown for systems 
n > 3 by Savageau (1975). 

One may assume that during evolution the regulatory mechanism based on end-pro- 
duct inhibition has been instrumental in the direction of increased stability of steady 
states rather than of the production of limit cycles. The question arises in which manner 
feedback systems are protected against dynamic instabilities. The results presented indi- 
cate two mechanisms for the stabilization (see also Savageau, 1975). 

(1) Minimization of the length of unbranched pathways with feedback inhibition. 
(2) Optimization of the kinetic parameters in such a way that great differences in their 

magnitudes are achieved. 

The first possibility seems to be of lesser importance since the number of reactions 
in a metabolic pathway are essentially determined by the chemical differences between 
the first substrate and the end-product. There are some indications that the second 
possibility, i.e. the differentiation of kinetic parameters has been realized in nature. The 
histidin biosynthetic pathway of the bacterium Salmonella typhimurium consists of an 
unbranched chain of ten reactions. The system would be probably unstable, if all the 
reaction constants were of the same magnitude (see Table 2). Since the kinetic constants 
and therefore, the steady state concentrations of the metabolites differ about sixtyfold 
(Savageau, 1975) the occurrence of unstable steady states is practically eliminated. The 
fact that systems are more stable if they involve widely different kinetic constants will 
be discussed in a more general context in Section III.5.(c). 

5. Time Hierarchy in Metabolic Systems 

It has been emphasized before that there exists a time hierarchy in biological systems. 
It results from the fact that the systems involve simultaneously many reactions which 
are not independent and which take place with different velocities. At first we shall 
consider the methodological consequences of this phenomenon for the modelling of 
complex metabolic systems and shall discuss afterwards its biological relevance. 

As a result of the time hierarchy the motion of a metabolic system may be differen- 
tiated into a sequence o f  epochs characterized by the time constants for the relaxation 
of the variables. Both from experimental and theoretical reasons an epoch of a certain 
time range is selected for the study. Some variables are so rapid that it may be assumed 
that they are already relaxed, i.e. that they are in a quasi-steady state. On the other 
hand, other variables are so slow that they remain approximately constant during the 
epoch considered. Therefore, one is left with a few essential variables which have to 
be described by differential equations. 

(a) Relaxation Times 

A mathematical description of the time hierarchy of systems requires a quantitative 
measure. One is provided by the eigenvalues of the dynamic system considered (see 
Section III.2). Their reciprocals are the relaxation times which indicate within which 
time the motions return to their steady state after perturbation. The system contains 
as many eigenvalues as variables. If it is hierarchically structured in time, its eigenvalues 
are widely different. It should be emphasized once more, that the eigenvalues characterize 
the system only in a close neighbourhood of the steady state where the linear approxima- 
tion is applicable. The possibility to define relaxation times in non-linear systems will 
be discussed in Section IV.4. 

The relaxation of an isolated reaction may be described by only one time constant. 
For a monomolecular reaction St ~ $2, the dynamics of which is described by 

dSt 
d~ - vl(Sl) + v_ 1($2), $1 + $2 = const., (3.48) 
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one obtains in the neighbourhood of the equilibrium the following differential equation 

da,  _ [ d v l  dv_,~ a, 

-d-[ = \dS1 + aS2,] " 

The solution of this equation is 

a,(t)= a,(to)exp[ (t---zt°) ~ 
with the relaxation time 

(3.49) 

(3.50) 

1 
z = (3.51a) 

dvl dr_ l 

dS1 dS2 

If the reaction may be described by first order rate constants (v~ = k~ S~, v_ t = k_ ~ $2) 
one obtains for the relaxation time 

1 
z - kl + k_l"  (3.51b) 

Analogously, one obtains for the bimolecular reaction $1 + $2 ~ $3 + $4 for the 
relaxation time 

1 

= k,(S ° + S °) + + S °) 

in which S ° represents the values of the metabolites at equilibrium. 

(3.52) 

(b) Steady State Approximation 
Differential equations with widely different time constants are "stiff". The overall 

motion of the system proceeds with a velocity which is characterized by the relaxation 
times of the slow processes even though the system contains rapid motions. In the 
usual numerical methods of integration the step width zs is determined by the values 
of the smallest relaxation time of the system 

~ ~ rain - , 

Therefore the number of iterations required is very high and the integration procedure 
becomes rather cumbersome. It is one of the tasks of the theorists to find economical 
methods which permit one to find acceptable approximate solutions. 

We shall suppose that the time constants of a system are g r o u n d  in such a manner 
that there exist two widely separated epochs. Then, the state vector S may be subdivided 
into the two vectors x and y 

S = (x, y) (3.54) 

where x represents the vector of the slow variables (Xx . . . . .  xnx) the number of which 
is nx and y the vector of the fast variables (y~ . . . . .  Yn,) the number of which is n r 
In such cases the differential equations (3.5) may be written frequently in the following 
manner (Tichonov, 1948) 

dx 
dt g(x, y) (3.55) 

dy 
# ~-~ = G(x, y) (3.56) 

where # represents a very small parameter (# ~ 1). g denotes the vector (g~ . . . . .  g,x) 
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of the net flux functions of the slow variables and G the vector (G1 . . . . .  G, )  of the 
net flux functions of the fast variables. The factor # in the original differential equations 
may be split off for two reasons: 

(1) because the concentrations of some matabolites are much lower than those 
of some others. One obtains the factor # by normalizing all variables to one concen- 
tration scale; 

(2) because the fluxes among metabolites differ widely in their magnitudes. In that case 
the factor # is obtained by normalization of the fluxes to one time scale. 

It should be emphasized that the splitting off is generally only permissible for certain 
domains of the state space, where both x and y as well as g and G are of the same 
order of magnitude. 

To apply the steady state approximation for the fast variables y means that we take 
in Eqns. (3.55) and (3.56) the limit transition /z---,0. Thus we obtain the dynamical 
system 

dx 
d t  = g(x, y) (3.57a) 

0 = G(x, y). (3.57b) 

In this equation system the number of the dynamic variables is reduced by the number 
of fast variables. Equation (3.57b) defines in the state space a surface G which contains 
the quasi-steady states of the system. The differential equation (3.57a) determine the 
slow motion in this surface. The question to be answered is, under which conditions 
the simplified system (3.57) describes satisfactorily the motion of a system determined 
by the complete Eqns. (3.55) and (3.56). 

We consider firstly the expression 

dyi 1 Gi(xj, y~) (3.58) 
dxj  = gj(xj, y,) 

which specifies the location of the trajectories of the complete system. Outside the close 
neighbourhood of the surface G, i.e. for (x, y)-values where the numerator in Eqn. (3.58) 
is not equal to zero one gets in the limiting case #--~ 0 

dyi  ---, oe (3.59) 
dxj 

This expression means that  outside of the surface G very large changes of y are 
accompanied by only very small changes of x. The trajectories lie in this region of the 
state space approximately along 

x~ = x ° = const. (3.60) 

The motion of the system on these lines is very fast since it is determined by the 
differential equations of the fast variables alone (Eqn. (3.56)). The trajectories are 
directed towards the surface G if the rapid subsystem (3.56) is stable, i.e. if the 
submatrix 

dG~ 
A~k = - -  (3.61) 

t3yk 

of the whole Jacobi-matrix Aik has only eigenvalues with negative real parts. Otherwise, 
the system moves away from the surface G. Stable states of the rapid subsystem are 
called attractors and unstable states repellors. The stability character of the rapid sub-sys- 
tem must be distinguished from the stability character of the whole system which is 
additionally determined by the slow subsystem. If the surface G is an attractor, the 
system arrives in the close neighbourhood within a very short time period. The duration 
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of the initial rapid motion decreases with smaller values of #. A detailed analysis shows 
that the fast variables relax within a time At which is approximately given by (Vasilieva 
and Butuzov, 1973) 

A t ~  #(ln ~ ) .  (3.62) 

After the relaxation the subsequent motion occurs only in the close neighbourhood 
of the surface G. One may conclude that for times t > to + At the motion of the system 
defined by Eqns. (3.55) and (3.56) is satisfactorily described by the simplified equation 
system (3.57). The situation is shown in Fig. 10 for the three-dimensional case with 
two slow and one fast variable, (S = (xl, x2, Yl)). 

Equation system (3.57) which is obtained by the steady state approximation may 
be solved in the following way. The solution y(x) of Eqn. (3.57b) is inserted into Eqn. 
(3.57a) so that the latter becomes a function of the slow variables x alone, and can 
be integrated. However, Eqn. (3.57b) can only be easily solved if G is a linear function 
of y. Generally, however, the implicit Eqn. (3.57b) for the quasi-steady states are non- 
linear functions of the variables, so that their explicit representation in an analytical 
manner is no longer possible. In such a case the coupled system of Eqns. (3.57a,b) 
must be solved by numerical iterative procedures. This may be done in the following 
way (e.g. Park, 1974): At a time t after an iterative solution of the non-linear Eqn. 
(3.57b) at fixed values of the slow variable x, one performs an integrative step of the 
system (3.57a) which leads to new values of the slow variable at a time t + At. These 
are again used to derive new values of y(t + At) by means of Eqn. (3.57b). This procedure 
ensures that at any time the initial values of y lie near the sought steady state values 
so that the number of iterations always remains small. 

The methods so far described are based on a preliminary classification of the fluxes 
and the metabolite concentrations before the integration is performed. Park (1974) has 
proposed another method which permits the classification of the variables by means 
of a computer. One starts with a numerical integration of the complete system of differ- 
ential equations and tests at every step whether the steady state approximation is applic- 
able to any of the variables. The value of 

' i =  ~ f f : - - f ' - I  = ~f.~/- (3.63) 

Flo. 10. Quasi-steady state surface and trajectory in a three-dimensional state space. In the 
Scheme one fast variable y and two slow variables xl and x2 are assumed. Equation (3.57b) 
defines a two-dimensional surface G. During the motion two epochs can be distinguished. At 
first, the surface G is approached by rapid changes of the fast variable y. After that the system 

moves slowly within this plane towards the steady state. 
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is used as criterion, i.e. one compares for each variable the ratio between the net flux 
and the out-flux. All metabolites for which Ei is smaller than a preset limit, form the 
set of the rapid variables and are considered to be in a steady state. 

Frequently it will not be possible to transform directly the original differential equa- 
tions (3.5) to a system of the structure of Eqns. (3.55) and (3.56) since the metabolites 
may be influenced simultaneously by rapid and slow fluxes. Therefore, one obtains 
in the general case after normalization of the fluxes the expression 

dSi = ci~v~ + c~vk. (3.64) 
dt # k=l j=l 

The stoichiometric matrix is divided into two components, one of which, c~j, represents 
the influence of the slow fluxes, while the other, C2k, that of the rapid fluxes on Si. 
To transform systems of the structure of Eqn. (3.64) into the form of Eqns. (3.55) and 
(3.56) a mathematical transformation of the variables is necessary. Because of the special 
structure of the right side of Eqn. (3.64) the slow variables may be represented as linear 
combinations of the original variables, In this way one obtains the compound pools 

xi = ~ wi~Sj (i = 1 . . . . .  nx) (3.65) 
1=1 

the so-called slow moieties, the changes of which are determined only by slow fluxes. 
w o are the elements of a matrix which determines the transformation of the variables. 

(i) Application to a Two-Enzyme System with Widely Different Reaction Rates. In this 
example we consider a system with two components which is depicted in Scheme 5. 

S k , ~ l  k2 
S 2 k 

Scheme 5. 

The dynamics of this system is described in a linear approximation by the following 
equations 

dS1 = _ klS1 + k_ 1S2 (3.66a) 
dt 

dS2 
dt - k tSt  - k - iS2  - k2S2" (3.66b) 

It is presupposed that the first enzyme catalyzes a very fast reaction and the second 
a very slow one. We shall define the small parameter # in the following manner 

k2 kl k2 k2 
# = k-1 - k-1 kl - ql k-11" (3.67a) 

After normalization of the time scale 

one obtains 

t = k2t, (3.67b) 

dS~ 1 
- - -  ( - q l S 1  "~ S2) (3.68a) 
dt* # 

dS2 _ 1 - ( -q lS2  + $2) - S2. (3.68b) 
dt* # 

As expected both equations contain #. It is easily seen that the system contains the 
slow moiety $1 + $2. If one sets $1 + $2 = x and S 2 = y the following expressions 
are obtained 

dx 
dt* = y - x = g(x,y ) (3.69a) 

dy 
# ~ = - (ql + 1)y + x -- G(x~ y). (3.69b) 
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Fro. i t .  Trajectories and quasi-steady state lines in the (x,y)-phase plane of a linear two-com- 
ponent system (reaction Scheme 5). The reversible reaction is slow in the left side (/~ = 1) and 

fast in the right side (/~ = 0.1). For  the equilibrium constant  the value ql = 1 is used. 

Figure 11 shows the trajectories for different values of #, which were obtained by 
numerical integration of the equation system (3.69). 

Depending on whether the rapid or the slow process is considered, one may choose 
an appropriate approximation procedure. 
(a) Consideration of the rapid process: 

The approximation presupposed is 

dx 
- 0, $1 + $2 = Xo = const. 

dt* 

For the Eqn. (3.69b) one obtains in the system of the coordinates of the original 
variables 

dS1 
- -  = - ( k l  + k_l)S1 + Xo. (3.70) 
dt 

The initial movement occurs therefore with the ve ry  short relaxation time 
z = 1/(kl + k_l) .  

(b) Consideration of the slow process: 
Here the approximation presupposed is G = x - (ql + 1)y = 0. This approximation 
is equivalent with $2 = qlS l ,  i.e. with the assumption of equilibrium for the partners 
of the rapid reaction. One obtains 

dx d(St + $2) (1 + ql)dS1 
- - -  - q t S l .  ( 3 . 7 1 )  

dr* dt k 2 dt 

The solution of this equation describes a relaxation motion with the characteristic 
time 

By means of Eqn. (3.67a) one obtains a relation between zl and z2, 

ql %. (3.72) 
zl -- #(1 + q l )  2 

Since/~ is very small and the fractional factor on the right side of Eqn. (3.72) never 
exceeds the value of 1/4, zl is always much smaller than z2. 
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(ii) Application to an Isolated Enzyme Reaction with Small Enzyme Concentration. In 
the following we consider the reactions of an isolated enzyme and take into account 
not only the variations of the metabolite concentrations but also those of the interme- 
diate complexes between the enzyme and the metabolites. It will be shown that for 
the case that the enzyme concentrations are very small compared with the metabolite 
concentrations the steady state approximation may be applied for the intermediate com- 
plexes. The example shows for a special enzyme mechanism under which circumstances 
it is justified to describe metabolic systems by steady state equations which contain 
only the metabolites as variables. 

Scheme 6 shows the enzyme catalyzed transformation of two substrates $1 and $2. 
k a k~ =- E , ~ _ S a + E  S I + E ~ k-i 

Scheme 6. 

E indicates the free enzyme and E* the intermediate complex. For this mechanism 
the following differential equations hold 

dS~ 
dt = - k I S I E  + klE* (3.73a) 

dS2 
. . . . .  k_2S2E + k2 E* (3.73b) 

dt 

dE* 
dt = kIS1E - (k - i  + k2)E* + k-2S2E (3.73c) 

dE 
d---t = - k l S I E  + (k - i  + k2)E* - k_2S2E. (3.73d) 

The system contains two conservation quantities, the total metabolite concentration 
So and the total enzyme concentration Eo 

$1 + $2 + E = S0, E + E* = Eo. (3.74) 

In many biochemical systems the concentration of the enzymes are much smaller 
than those of the substrates. One may therefore assume that 

Eo 
U = So '~ 1. (3.75) 

After normalization of the variables to the same scale 

$1 $2 E* 
xl = - - ,  x2 = - -  Yl = - -  (3.76) 

So So' Eo 

and introduction of dimensionless kinetic parameters 

klEo, Yf_l = k_ Eo Eo = ~ S--~' ##2 = k2 S--~' ~ - 2  = k-2Eo (3.77) 

one obtains after elimination of E from Eqn. (3.73) the following expressions 

d x  1 

dt 

d x  2 

dt 

dyl 
u-d? 

- - =  ~ x l y l  - # # 1 x l  +J,vf-lyl =01 

- -  ~--" ~ - 2 X 2 7 1  - -  ~ t ° - 2 X 2  "~- ~ 2 2 !  = g 2  

(3.78a) 

(3.78b) 

= ~ I X I  - -  ( ' ~ - 1  "~- ~ f 2  -~" ~ I X !  Jr" ~ - 2 x 2 ) Y l  -~- ~'#~_2X2 = G 1 . (3.78c) 
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Since /~ is very small one may take the metabolite concentrations x 1 and x2 to be 
constant for very short times. In that case Eqn. (3.78c) is a linear differential equation 
for the normalized concentration of the intermediate Yl. The solution is an exponential 
function, which describes the transition of E* to the steady state. This process has the 
relaxation time 

z = (k-1 + k 2 + kxSl + k-2S2) -1. (3.79) 

For periods t ~> z the steady state approximation for yl is applicable (#--,0) and 
one obtains 

~IX1 "q- ~-2X2 (3.80) 
y0 = ~ff_ 1 + ~2 + °a~lXl + 0~-2X2" 

By insertion of Eqn. (3.80) into Eqns. (3.78a, b) and reverse transformation into the 
original variables one arrives at the differential equation 

dS1 dS2 
dt dt 

Eo(klk2S t - k_ tk_ 2S2 

k_~ + k2 + klS1 + k-2S2" 
(3.81) 

This equation is the usual Michaelis-relation which depends only on the variables 
S~ and $2. The total enzyme concentration enters as a parameter. Equation (3.81) 
may be also written in the following form 

dS 2 1 1 (e~/K,,)S1 - ( V,,~ t/K~, 1 )$2 
v = dt = 1 + (S, /K~) + (S2/K~,') (3.82) 

V~ and V,~ 1 denote the maximal velocities of the forward and backward reaction, 
respectively 

V~ = k2Eo, Vr~ 1 = k_ 1Eo (3.83) 

and K~ and K~, a defined by 

k~ - k_l + k2 
kl 

, K~, 1 = k_ t + kz (3.84) 
k-2 

are the Michaelis-constants of the substrate and product respectively. 
(iii) The Eneroy Charoe as an Essential Variable of  Eneroy Metabolism. Scheme 7 

shows a reaction system which plays a central role in the energy metabolism (see Section 
5). It contains the adenylate kinase reaction (v~, yAK), ATP-consuming and generating 
processes (Vc and VG respectively) and reactions forming and degrading AMP (W and 
vo, respectively). 

1, 
Scheme 7. 
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The dynamics of the system is described by the following differential equations 

d[ATP] 
dt - vG - Vc - v~,~ + v;~K (3.85a) 

d[ADP] 
dt - vc + Vc + 2v~ - 2v£,: (3.85b) 

d[AMP] 
dt = VF -- VD -- v~x + v;x. (3.85c) 

Usually, the fluxes which enter Eqns. (3.85a--c) are of different orders of magnitudes. 
The processes forming and degrading AMP are much slower and the adenylate kinase 
reaction is much faster than the processes which consume and generate ATP. After 
normalization of the fluxes to the same scale (cf. Reich and Selkov, 1974) Eqns. (3,85a-c) 
may be transformed into the system 

d([AMP] + [ADP] + (ATP]) 
= P2(~F -- ~O) (3.86a) 

dt 

d([ATP] + ½[ADP]) = ½(vG - Vc) (3.86b) 
dt 

d [ A M P ]  /./1 ]./2 (/~F VD) ~+ Pl dt = - - YAK + I(K. (3.86C) 

g~K, YAK, V'V and VD denote the normalized fluxes which are of the same order as Vc 
and vo. #1 and /~2 are small parameters arising from the different magnitudes of the 
fluxes. It is seen that for the motion described by Eqns. (3.86a--c) three time scales 
may be distinguished. The first is determined by the rapid change of AMP, the second 
by the motion of the pool (ATP + 1/2ADP) and the third by the slow changes of 
the total sum A of the adenine nucleotides. The limit transition #1--~0, /~2--~ 0 gives 

[AMP] + [ADP] + [ATP] = A = const. (3.87) 

and 

g+K - 6AK = 0; i.e. k~K[AMP][ATP] = kAK[ADP] 2. (3.88) 

Equation (3.87) shows that the total sum of the adenine nucleotides is conserved 
during the intermediate time period. Equation (3.88) is identical with the equilibrium 
condition for the adenylate kinase reaction. In this approximation the dynamics of 
the system is described by only one essential variable. Owing to the constancy of A 
one can use as the essential variable 

[ATP] + ½[ADP] 
x = [AMP] + [ADP] + [ATP] '  (3.89) 

which is identical to the energy charge defined by Atkinson (1968) and Atkinson et 
al. (1975). The numerator contains the metabolically available phosphoryl groups in 
the adenylate pool (2 ADP are equivalent to 1 ATP owing to the adenylate kinase 
reaction). 

(iv) Estimate of the Error in the Steady State Approximation. The procedure outlined 
to deal with systems of differential equations which describe coupled motions with 
greatly different velocities is only exact if the time constants of the rapid motions are 
infinitesimally small. Therefore, an error is always introduced if the steady state approxi- 
mation is applied to any real system. After an initial relaxation the system moves in 
a certain distance of the surface G which is determined by the steady state condition 
for the fast variables. The principle of a method to estimate the error incurred is illus- 
trated for the two-dimensional case. In Fig. 12 is shown the (x,y)-phase plane which 
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FIG. 12. Definition of the maximal deviation 6,.ax of the trajectories from the quasi-steady state 
line G(x,y) = 0 after the initial relaxation phase for a two-component system. 

is divided by the quasi-steady state line (G(x, y ) =  0). Since we assume that y is the 
fast variable, the trajectories shown approach the quasi-steady state line which is 
assumed to be stable nearly vertically, i.e. parallel to the y-axis. For each value of 
the slow variable x there may be found a trajectory for which the direction of the 
motion given by the vector f = (g, G) is perpendicular to the normal of the quasi-steady 
state surface G given by the vector n = (t3G/ax, OG/c~y) (point P in Fig. 12). This means 
that the scalar product of f and n disappears 

~G ~G 
g + ~-y G = 0. (3.90) 

At the point P the deviation 6 of the trajectory from the quasi-steady state line 
has a maximum (fi = fro,x). Equation (3.90) can be used to calculate t~ma x a s  a function 
of the slow variable x. Its maximal value in a given interval (xa < x < xb) is denoted 
by AX,Xb. Tichonov (1948) has proved that a trajectory which has passed the point 
P defined by Eqn. (3.90) does not surpass the value Ax,xb during the further motion 
in this interval of the slow variable. Ax~xb is therefore a measure of the maximal devi- 
ations of the trajectories from the quasi-steady state lines after the completion of the 
rapid relaxation. The use of Eqn. (3.90) for the determination of ~5,,ax is difficult owing 
to its non-linear nature. Park (1974) has proposed a simple procedure for the determina- 
tion of 6m,x which is based on a linearization with respect to small deviations ft. If 
the system contains several slow variables xi but only one fast variable y, Eqn. (3.90) 
must be replaced by the equation 

~G ~G 
-~xig i + -~-yG = 0. (3.91) 

In systems with several fast variables a corresponding number of ritual-values have 
to be used for the characterization of the error. As an example we estimate the error 
involved by the steady state approximation for an isolated enzyme reaction (see Section 
III.5.(b).(ii)). It is presupposed that the intermediate complex E breaks down irreversibly 
into the free enzyme E and the product $2. (k_ 2 = 0). Furthermore, it is assumed that 
initially the metabolite is fully in its substrate form (St(to) = So). Under these conditions 
one obtains in the ($1, E)-phase plane for 6m,x the following expression 

E* k2/kl E°Km 
trm~x = (AE*)m~x = (St) (--~m+ S ~ "  (3.92) 
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a ~  

a~ cl2 

FXG. 13. Relative error e = (AE*)mJE* involved in the steady state approximation for the 
enzyme substrate intermediate complex for a simple enzyme reaction. Parameter values: 
Km= 0.1 mM; k2/kl = 10 -3 raM. The total enzyme concentration and the total substrate concen- 

tration are varied. 

$1 is the concentration of the substrate after the initial relaxation phase to the quasi- 
steady state line. 

Figure 13 shows the relative error E = (AE*aJE*) as a function of the total enzyme 
concentration for various total substrate concentrations So. The kinetic parameters used 
for the calculation are listed in the legend to the figure. They correspond to realistic 
values (e.g. Darvey et al., 1975; Dixon and Webb, 1962). As expected the error increases 
with increasing enzyme concentration Eo and decreasing substrate concentration So. 
It is seen that the error increases more than linearly with larger enzyme concentrations. 
This is explained by the fact that after the initial relaxation phase the substrate is 
already partly bound to the enzyme or converted to the product. Thus, for a given 
So the substrate concentration $1 is the smaller the higher the enzyme concentration. 
The relative error remains small even if the enzyme concentration is comparable to 
the substrate concentration. Equation (3.92) reveals that the fit of the approximation 
depends also on the ratio of the rate constants k 2 and kl. It follows that the steady 
state approximation is also applicable for high enzyme concentrations if the breakdown 
of the intermediate E* into the product is slow compared to the binding of the substrate 
to the enzyme. 

(c) Metabolic Catastrophes and their Suppression 

As described in the preceding section the motion in a dynamic system with widely 
differing time constants proceeds in such a manner that after an initial relaxation of 
the rapid variables only slow changes occur. This conclusion is based essentially on 
the presupposition that the rapid subsystem has only stable quasi-steady states, and 
that therefore its motion is confined to the quasi-steady state surface defined by Eqn. 
(3.57b). We consider now the possibility that this surface is not stable for all values 
of the slow variables. It is evident, intuitively, that in such a case the rapid variables 
become essential if the system during its slow motion reaches a region of instability. 
Then the system may jump into another stable state. Such sudden changes of state 
are called catastrophes. They are the object of a special "theory of catastrophes" which 
has been developed recently (Thorn, 1972). 

The investigation of conditions in which such discontinuous changes occur may be 
of biological importance, since rapid reactions of metabolism which usually are con- 
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cealed may become of overall importance in certain constellations. It is hardly likely 
that in the general case the sudden emergence of concealed motions in metabolic systems 
may be of benefit for their function. Possibly, they occur only if a system is adapted 
to specialized functions which are connected with rapid motions. 

From the theoretical point of view catastrophes have much in common with bifurca- 
tions (see Section 111.4). While bifurcations are defined by changes of stability behaviour 
of the whole system at variations of the parameters  of the system, catastrophes occur 
if the variations of the slow variables lead to a loss of stability of a f a s t  subsystem. 

Firstly we shall demonstrate by means of a simple example which kind of dynamic 
phenomena may be described by the theory of catastrophes. Secondly it will be shown 
under which conditions the occurrence of catastrophes may be excluded. 

(i) Catastrophes in a Two-Component  System. We consider the two-dimensional sys- 
tem 

dx 
d~ = y - Yo = g(x, y) (3.93a) 

dy y3 
# ~-  = y - - x = G(x, y) (3.93b) 

in which # is again a small parameter. The quasi-steady state line 

G(x,  y) = y - y3 _ x = 0 

is S-shaped (Fig. 14a, b). According 
characteristics of this line is determined 

Oy 

(3.94) 

to the results of Section III.2 the stability 
by the expression 

 Gdy 
= 0x d x '  (3.95) 

G = 0 is a stable state of the rapid subsystem only if OG/ay < 0. Since in the present 
case the numerator in Eqn. (3.95) is always negative only the denominator determines 
the stability characteristics. It follows immediately that the section P1P2 of the S-shaped 
line for which d y / d x  is greater than zero (section G- )  is an repellor. The other two 
section G ÷ are stable and therefore attractors. The positions xl and x2 of the critical 
points P~ and P2 are determined by the condition 

~G 
= 1 - 3y  2 = 0. (3.96) 

0y 

In combination with Eqn. (3.94) one obtains the two solutions 

2 I xl,2 +- ~x/~" (3.97) 

The motion of the system as a whole is determined by the location of the stationary 
state on the quasi-steady state line. It is defined by the intersection P of the curve 
G = 0 with the line 

g = Y - Yo = 0 (3.98) 

which runs parallel to the x-axis. It is easily demonstrated that the stationary state 
is stable if the intersection P lies on one of the two stable sections G +. Figure 14a 
shows the course of the motion described by the complete differential equations (3.93a,b) 
from an arbitrarily chosen initial value A. Since the parameter /~ has been assumed 
to be very small (# = 0.02), the system jumps from the state A to a point Q~ on G + 
and moves thereafter slowly towards the critical point P~, at which again the rapid 
motion ensues which leads to the point Q2. From it the system moves slowly to the 
stable stationary state P. If the intersection P lies on the unstable section G -  of the 
quasi-steady state line (Fig. 14b), there is always an unstable steady state, provided 
that # is sufficiently small. The resulting motion is a limit cycle C o : Q I P I Q 2 P 2 ,  in the 
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FIG. 14. Quasi-steady state lines g = 0 and  G --- 0 and  trajectories in the (x,y)-phase plane 
of the dynamic system defined by Eqns. (3.93a, b). The dotted lines represent the unstable sections 
G -  of the quasi-steady state line G = 0. P1 and P2 are the catastrophic points with the x-coor- 
dinates xl  and  x2, respectively. (a) Relaxation toward a stable steady state. A jump-like transition 
occurs between the two stable sections G + of the quasi-steady state line G = 0. Parameter  
values: p = 0.02; Yo = 0.9. (b) Relaxation oscillation around an unstable stationary state. Par- 

ameter values: # = 0.02, Yo = 0.4. 

course of which slow and rapid motions alternate. Such kind of periodic behaviour 
is often called relaxation oscillation. One obtains limit cycles even for larger values 
of ~; in such a case the motion is no longer close to the quasi-steady states. 

This example shows that the steady state approximation for rapid subsystems can 
only be applied after careful scrutiny of the stability properties of the quasi-stationary 
states of the systems, otherwise there is the danger that one analyses unstable quasi- 
steady states which do not represent the motion of the slow variables. On the other 
hand the knowledge of unstable quasi-steady states is important for the understanding 
of complicated motions of biological systems, which are characterized by discontinuous 
changes and periodicities. 
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(ii) Rapid Reversible Reactions Suppress Catastrophes. It can be proved that in a 
dynamic system in which all rapid reactions are reversible metabolic catastrophes cannot 
occur. We consider the system of reactions 

, ,2 x2 ~ ( S I ,  . S,). (3.99) ($1 . . . . .  S , ) ~ x l  , _1 . . ,  

It consists of the substrates X1 and X2 of the rapid reactions w2 and w-2, which 
are imbedded in a system of slow reactions with the metabolites $1 . . .  S,. For  the 
kinetics of w2 and w_ 2 one may write, according to Section III. 1, 

k 2 X  1 - k _ 2 X  2 
w E - w _  2 ~-- R (3.100) 

/t 

in which R is again the regulating factor, the structure of which depends on the special 
mechanism of enzymes which catalyze the rapid reactions. R also reflects the influence 
of the substrates X~ and X2 and that of possible effectors such as the metabolites Sa. 
For  the reaction mechanism one obtains the differential equations 

d X l  (k2X1 - k - E X 2 )  R 
dt - Vl - (3.101a) kt 

d X 2  (k2X1 - k _ 2 X 2 )  
dt = v3 + R. (3.101b) # 

By addition and subtraction of these equations the slow and rapid motions are separ- 
ated in a similar manner as in the example given in Section III.5.(b).(i). If one sets 

g~ = X1 + X2; Y2 = Xt - X2 (3.102) 

one obtains 

dY1 
dt - va + va = g (3.103a) 

dY2 [k2(Y1 + Y 2 ) -  k - 2 ( Y l  - Y2)] 
dt - vl - v3 - = G.  (3.103b) 

Since the factor /t enters only in Eqn. (3.103b), Y1 represents an additional slow 
variable to Si and I12 a rapid one. If kt is small the system relaxes to the quasi- 
steady state surface which is defined by 

G(Y~, Y2, Si) = 0. (3.104) 

The system remains infinitesimally close to this plane if that is stable with respect 
to the rapid variable Y2, i.e. if 

0G 
- -  < 0. (3.105) 
~r2  

We shall now demonstrate that this stability condition is always fulfilled, if # is 
sufficiently small. From Eqn. (3.103b) it follows for the quasi-steady state plane if 
/~---* 0 

k - k_ 2"~ 0 
yO = _ -k2 -+ k--2) El" (3.106) 

If one transforms this equation to the original variables X1 and Xz, it may be seen 
that it is identical with the equilibrium ratio 

X_~2 ° _ kz (3.107) 
x ° k - 2  
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For small but finite # we assume II2 = yO + AI,2 ; Yt = yO and linearize G = 0 in 
the neighbourhood of the plane yO = yO(yO). We obtain for this approximation, 

~(vt - v3) 
AY2 - (k2 + k-2)R" (3.108) 

In the system of the original variables Eqn. (3.108) is equivalent to 

zkXt --- - AX2 = z2v,e,. (3.109) 

Equation (3.109) originally derived by Hammes and Alberty (1960) represents a simple 
relationship between the relaxation time z2 of the fast enzyme E2, the net flux v,~t 
and AX1, the deviations of the metabolite concentrations in the steady state from their 
equilibrium. Equation (3.109) has been used by Schimassek et al. (1963) for the estimation 
of the relaxation time of enzymes near to equilibrium. From 

~G _ 0(v, - oa) [(k2 + k-2)Y2 + (k2 - k-2)YIIOR (k2 + k-2) R (3.110) 
~Y2 0Y2 l_ # ]0Y2 # 

one obtains by the use of Eqns. (3.102) and (3.106) 

, l { 0R a R ~  t3G _ (k2 + k_ z) R + ½(vt - v a ) = ,  
OY2 # J R \  

( Or, Ovl dr3 Ova) (3.111) 
+ ~ - aX2 + ~ + aX2 aXl " 

The first term of Eqn. (3.111) is always negative. Since the kinetic equations represent 
saturation functions, one can presuppose that all other terms in Eqn. (3.111) do not 
exceed certain finite values. Therefore, one can always obtain a sufficiently small, but 
finite p., so that the condition of stability given by Eqn. (3.105) is fulfilled over the 
entire quasi-steady state plane which is defined by Eqn. (3.104). The concentrations 
of the substrates of the rapid reversible reaction XI and X2 are therefore, always close 
to their equilibrium. Therefore, on variation of the slow variables St or Y~ the system 
will never reach a critical point, at which the rapid reaction veers widely from equilib- 
rium and the system jumps. This means that the rapid reactions are concealed in the 
motion of the total system. 

Example: As an example we consider a reaction system depicted in Scheme 8 with a feedforward inhibition 
of the reversible reaction. 

I ~I kz k 3 _ 
Vo ~-X, ~ X 2 

Scheme 8. 

The system is described by the following differential equations 

dX1 k2Xt  - k - 2 X  2 
- Vo (3.112a) 

dt (1 + aXe)# 

dX2 k2X1 - k - 2 X 2  
dt = - k a X 2  + (1 + aX~)l~ (3.112b) 

From these equations one obtains for the quasi-steady states of the rapid variable Y2 = X, - X2 the 
curves shown in Fig. 15. It may be seen that for very small values of the parameter #, i.e. if the reversible 
reaction is rapid enough, the unstable section G-  disappears, which had been generated by the feedforward 
inhibition. 

(d) The Biological Significance of Time Hierarchies 
The preceding sections have dealt mainly with the methodical problems connected 

with the existence of time hierarchies in metabolic systems. It was shown that the exist- 
ence of an epoch of rapid reactions if they are reversible facilitates greatly the theoretical 
analysis since it permits the description of a dynamic system in the state space of 
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FIG. 15. Disappearance of the multiplicity of the quasi-steady state line by acceleration of the 
feed-forward inhibited reaction of Scheme 8. Parameter values: Vo = 1, k2 = 0.5, k_2 = 1, 

k3=O.5, a= 3, q = 4 .  

the essential slow variables which is of lower dimensions. In this section we endeavour 
to bring out the biological significance of time hierarchies. As a rule a metabolic chain 
consists of many reactions, consistent with the complicated multistep nature of metabo- 
lism. 

Computer studies have shown (Gardner and Ashby, 1970) that the probability of 
the instability of a system rises with the number of variables. Therefore the existence 
of time hierarchies may be an important factor in the stabilization of metabolic systems 
by virtue of the reduction of the number of dynamically essential variables. Another 
important feature of biological systems is their self-stabilizing character, which is main- 
tained in the face of many perturbations. With smaller parameters #, i.e. faster reversible 
reactions, a point is reached where the quasi-steady state planes on which the essential 
motions take place become smooth. Under such circumstances the rapid reversible reac- 
tions are close to their equilibria, and all parameters which affect the properties of 
the equilibrium enzymes, and are expressed in the regulating factor R, become unimpor- 
tant for the dynamics of the metabolic system. Or to put it in general terms: the global 
dynamic properties of the system become structurally stable with respect to the changes 
of the parameters of the rapid reversible reactions. Therefore the system is determined 
not only by a lesser number of variables but also by fewer parameters if # if sufficiently 
small. 

Such considerations may be of significance for the evolution of biological systems. 
It is conceivable that the stabilization of metabolic systems during evolution may have 
been achieved by an optimal adaptation of catalytic efficiencies and concentrations of 
enzymes to widely different values. The stabilization by widely different rate constants 
has been proved for the special case of feedback inhibition (see Section III.4.(a).(ii)). 
The considerations apply not only to the overall reactions of enzymes. Each enzyme 
catalyzed reaction is composed of many reversible partial "microscopic" reactions, that 
are characterized by a multitude of parameters, which are the subject of pure enzym- 
ology. Only the circumstance that all these microscopic reactions are reversible, and 
generally much more rapid than the overall reaction, justifies the usual assumption 
of a steady state for enzyme reactions in metabolic systems and enables one to describe 
them by few macroscopic kinetic constants. Otherwise the theoretical description of 
biological systems would be a hopelessly complex task. 
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One may surmise that during evolution there occurred not only an increase of com- 
plexity, as needed for the growing number of biological functions, but also a greater 
compactness of the systems by virtue of the establishment of widely varying time con- 
stants. In such a manner the structural stability of the systems might have increased. 

IV. CONTROL OF STEADY AND TRANSIENT 
STATES 

For the elucidation of the functional behaviour of metabolism it is necessary to evalu- 
ate the role of the enzymes for the regulation of the pathways. Control enzymes may 
be defined by the influence of their parameters either on steady states or transient 
states. The identification of control enzymes has been a main problem in the investiga- 
tion of metabolic regulation both in experimental and theoretical work. 

1. Identification of Regulatory Enzymes 
For an analysis of the regulation of metabolism a clear and unambiguous definition 

of the role of an enzyme is essential. We consider a regulatory enzyme to be one 
the properties of which influence either metabolite concentrations or fluxes and which 
is affected by effectors other than substrates. We distinguish between the control in 
a steady state and that in a time dependent process. In the latter case a further definition 
is used: an enzyme is called time limiting if it has an influence on the  relaxation time 
of the system. 

Similar but not entirely coincident definitions have been given by other authors. Krebs 
defined pacemakers as enzymatic steps the velocities of which are not limited by the 
substrate concentrations but by the activities or concentrations of the enzymes. The 
main experimental criterion for the identification of pacemakers was the observation 
of opposite changes of the velocity of an enzyme and the substrate concentration (Krebs, 
1957; Krebs and Kornberg, 1957). Biicher and Rfissmann (1963) criticized the definition 
mainly because of the finding that glycolytic flux and fructose 6-phosphate change in 
parallel in skeletal muscle although the phosphofructokinase is obviously an important 
flux regulator. They defined a rate limiting enzyme as one which controls the flux through 
an enzyme sequence. They recognized the possible existence of several rate limiting 
enzymes for one pathway such as phosphorylase and phosphofructokinase in muscle. 
The main experimental criterion for their identification was the deviation of the mass 
action ratio from equilibrium. The rate controlling concept of Higgins (1965) is similar 
to that of BiJcher and Riissmann (1963). Higgins proposed a quantitative expression 
for the influence of an enzyme on the flux, the control strength. 

All these concepts consider only the control of the flux. Newsholme and Start (1973) 
and Rolleston (1972) defined a regulatory enzyme more broadly as one which is in- 
fluenced by factors other than substrates and affects either flux or metabolites. They 
specified that the reaction must be catalyzed by a non-equilibrium enzyme. Although 
it is true that regulation by an enzyme implies deviation from equilibrium one may 
object that the term "non-equilibrium" does not only refer to an intrinsic property 
of an enzyme but rather may indicate the conditions under which it operates. It would 
be preferable to restrict the term to those enzymes which catalyze reactions that are 
far from equilibrium under all circumstances in the cell. Otherwise, the definition of 
a regulatory enzyme is identical with the one here proposed. 

Weber (1974) introduced the concept of key enzymes. He lists fourteen characteristic 
features of such enzymes, including rate limitation, low activity, catalysis of quasi-irrever- 
sible reactions, their allosteric regulation by feedback and multiple control signals and 
their frequent position in an enzyme sequence either at the beginning or at the end. 
He makes no attempt to indicate whether all of these features are necessary or sufficient 
properties. Thus, his concept falls short of an exact definition. 

How to identify experimentally a regulatory enzyme? Several procedures have been 
proposed (e.g. Newsholme and Start, 1973; Hales, 1967) and some of the definitions 
given above are closely connected with the experimental methods (e.g. pacemakers, rate 
limiting enzymes). 
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The most general and widely acknowledged criterion is the deviation of the mass 
action ratio from the equilibrium constant. Enzymes which catalyze reactions far from 
equilibrium regulate in general the concentrations of the metabolites but not necessarily 
the flux through an enzymatic chain (see Section IV.3). 

It has been assumed that the enzymes with the lowest maximal velocities are regula- 
tory. Slowness is indeed an important although not sufficient characteristic of a regula- 
tory enzyme and there is an intimate relation between the slowness of an enzyme and 
the deviation of the mass action ratio from equilibrium (Section IV.3.(a)). However, 
the maximal velocities determined under optimal conditions in vitro do not adequately 
characterize the slowness of an enzyme in metabolism. Generally, the activities in vivo 
lie far below the Vmax-Values of the enzymes owing to the action of effectors in the 
cell. Even in the simplest case of a linear dependence of the enzyme velocity on the 
substrate concentration the first order rate constant Vma,jK,, would be preferable to 
Vmax alone. In agreement with this theoretical argument, aldolase and enolase have 
rather low Vmax-values but are not regulatory in glycolysis, whereas the pyruvate kinase 
influences the concentrations of many metabolites although it has a high Vmax-value 
(Newsholme and Start, 1973). 

In all concepts the influence of effectors other than substrates is considered as an 
indication of a regulatory enzyme. Krebs (1957) noted that an activation of the flux 
through an enzyme with a simultaneous decrease of its substrate concentration should 
indicate the action of an activator on this enzyme. Chance et al. (1958) took into account 
both the changes of substrates and products in the crossover theorem. In many cases 
both procedures fail to identify or falsely indicate interactions of enzymes with effectors 
(see Section IV.3.(b)). The fault  theorem by Higgins (1974) is an extension of the crossover 
theorem in which the flux changes are included. Although the application of this theorem 
does not give rise to erroneous conclusions it does not identify all interaction sites. 
A preferable quantitative theorem has been proposed (Heinrich and Rapoport, 1974b) 
which is applicable if the rate laws of the enzymes are known (see Section IV.3.(b)). 

The investigation of the influence of effectors on purified enzymes has been a frequent 
method of identification of regulatory enzymes. The results can only be applied to 
the conditions in the cell if the influence of the effectors in vivo has been proved. There 
are many examples of allosteric enzymes which have no regulatory function in the 
cell (e.g. glyceraldehydephosphate dehydrogenase; Conway and Koshland, 1968; 
Kirschner et al., 1966). The conditions in the cell are better approached by studies 
on permeabilized cells (Sols and Marco, 1970; Sols et al., 1973) in which the in situ 
kinetics is measured. 

Another method for the identification of regulatory enzymes is the use of reconstituted 
enzyme systems (Gatt and Racker, 1959a,b; Uyeda and Racker, 1956; Lo et al., 1968; 
Gosfilvez et al., 1974; Scopes, 1974) which should allow the study of the coordinated 
control of several enzymes. 

An important method for the identification of the slow enzymes in a system are 
relaxation experiments. After perturbation of a metabolic system fast reversible enzymes 
will establish a near equilibrium within a short period of time while the time limiting 
enzymes will determine the relaxation of the entire system and will be far from equilib- 
rium. Relaxation experiments may require some mathematical effort for their full evalu- 
ation but yield more information than other methods. 

Finally, the position of an enzyme in a sequence of reactions is of importance for 
its regulatory role (Section IV.2.(d)). The first enzyme in a chain or one after a branching 
point is predestined for the control in the steady state. Such a general consideration 
provides a guideline for the experimental investigation. 

2. Control o f  Steady States 

The role of an enzyme in a steady state must be distinguished from that in a time 
dependent process. In considering the control of a steady state the question is asked 
which enzymes determine the fluxes and the metabolite concentrations. We shall consider 
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solely stable steady states which are the only ones which may be physiologically relevant. 
Mathematically, the control is expressed in form of control parameters which give the 
variation of the flux or of the metabolite concentrations after a differentially small 
change of the parameters. Thus, the control parameters are properties of a given steady 
state of the system. Owing to the linearization involved they may not represent faithfully 
the nondifferential large variations observed in real experiments. The role of an enzyme 
depends on two factors: firstly, its effect on the flux and the metabolite concentrations 
and secondly, the strength of the effectors acting on it. Therefore, the influence of effec- 
tors on the enzymes has to be included in the considerations. 

(a) Definitions of Control Parameters 
Two cardinal terms were proposed to describe the influence of an enzyme on flux 

and metabolites (Heinrich and Rapoport, 1974a): 

(i) The control strength Ci which gives the relative changes of the net flux vg by relative 
variations of the activity vi of an individual enzyme E~ 

avg 

In v 9 _ vg (4.1) 
Ci - ~3 In vi avi" 

vi 

The control strength may assume any value. Ci = 0 means that the enzyme has 
no influence on the total flux. A control strength greater than unity means that 
the enzyme has a greater than linear influence on the total flux, a negative value, 
that an activation of this enzyme leads to a decrease of the total flux. 
A previous definition of the control strength has been given by Higgins (1965). His 
expression was 

C i -  ~vg (4.2) 
~p 

which is dependent on the choice of the parameter p and is not dimensionless. The 
present definition can be written as 

t3vg / Ovi (4.3) 
~p 

and has the advantages that: 1, it is independent of the choice of the parameter 
p; 2, it is dimensionless; and 3, it is applicable for branched pathways in which 
v~ may be unequal to vg. A suitable choice of the parameter p is obviously the 
concentration of an enzyme since the velocity is proportional to it if the substrate 
concentration is in large excess. In that case the formula (4.3) becomes 

Ci - [Ei] c3vg (4.4) 
vg a [ E i ]  ' 

where I-EJ denotes the enzyme concentration. This expression has been used to 
measure the control strength experimentally in erythrocyte glycolysis (Reimann et 
al., 1975). The definition given above is, however, broader since it is also applicable 
if the enzyme and substrate concentrations are of equal magnitude. Then, the velocity 
of the enzyme is not proportional to the enzyme concentration. 
It has been criticized (Ottaway, 1976) that the logarithmic definition (Eqn. (4.1)) 
prohibits its use if negative flux changes occur in response to activations of enzymes. 
This is obviously a misinterpretation since the logarithmic form is only an abbre-' 
viated expression of the fact that percentual changes are compared. The definition 
(4.1) of the control strength is identical with that of the sensitivity coefficient of 
Kacser and Bums (1973). 
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(ii) The elements of the control matrix Sij give the relative changes of the metabolite 
concentrations Si by relative variations of the enzyme activity vj 

3 In Si (4.5) 
Sij - ~3 In vj' 

S~j > 0 means that activation of the enzyme leads to an increase of the concentration 
of the metabolite and S o. < 0 to a decrease. In all cases a given steady state is 
compared with a new one after differential perturbation of enzyme parameters. 

(b) The Influence of Effectors; The Effector Strength 

The influence of an effector Fk of an enzyme E~ on the net flux and the metabolite 
concentrations of the entire chain may be described as follows if only small changes 
AFk are considered (Heinrich and Rapoport, 1974a) 

4v ° _ O In v 0 t3 In v i AFk - CiXik AFk (4.6) 
0 In vi c~ In FR 

and 

ASj - ~ In Sj O In vi AF k _ S j iXik  AFk .  (4.7) 
0 In vi O In F k 

X~R is called the effector strength. It is a measure of the influence of an effector on 
the kinetic properties of the isolated enzyme E~. Analysis of Eqns. (4.6) and (4.7) shows 
that there are two different requirements for an enzyme to be of regulatory importance 
with respect to effectors: first, the enzyme must control metabolites or the flux (large 
values of S o and C i respectively) and secondly, it must be the target of effectors. The 
effector strengths can be calculated easily by differentiation of the rate laws for an 
enzyme with respect to the effector concentration. Some simple examples are given 
in Table 3. The essential conclusions to be drawn from Table 3 are that cooperative 
enzymes have greater effector strengths compared to Michaelis-type enzymes and that 
their sensitivities to allosteric effectors are grea-test at the lowest substrate concentrations. 
It is possible that the most adaptive property of allosteric enzymes is the higher sensi- 
tivity towards effectors rather than the sigmoidal response to substrates which is promi- 
nent at higher substrate concentrations and has hitherto attracted most of the attention. 

(c) Calculation Procedures for the Control Parameters 

The calculation of the control parameters by direct differentiation according to Eqn. 
(4.1) is only possible for simple systems for which analytical expressions for the metabo- 
lite concentrations and the flux can be obtained (see Heinrich and Rapoport, 1974a). 
Generally, this is not possible for nonlinear systems. In this case we go back to the 

TABLE 3. EFFECTOR STRENGTHS FOR A COMPETITIVE, NON-COMPETITIVE OR ALLOSTERIC INHIBITOR 

Expression for the 
Inhibition Rate law effeetor strength 

S/K,,, l/Ki 
competitive v = V.,ax 1 + S/K., + I/Ki 1 + S/K., + I/K~ 

Vm.. S/K,. I/K, 
v = 1 + I/K i 

n l /KiL ( l  f I/K')" 
S/K,.)" 

non-competitive 
(1 + l/Ki)(1 + S/K,.,,) 

allosteric (c.f. model of  
Vmax s/K~ Monod  et al. (1965)) v = 

L(I+ t/K,r'  
(1 + S/K,,) 1 + (1 + S / K J ' ]  

+ I/K,)(I  L(1 + I/ri)'x~ (1 
\ 
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steady state condition (Eqn. (3.8)) and consider small changes in the velocities of an 
enzyme E, (Heinrich and Rapoport, 1975): 

f/(v, + Av,) ~ ~, dfi dSj + afi • J=' ~ ~ av, = 0. (4.8) 

Rearrangement of this equation gives 

~ Olnv, OlnSj ~ Olnv, 
cirri + cilvt -- 0 (4.9) 

1=1 j=l OlnSj Olnv, t=x dlnv,  

(i = I . . . .  , m) 

( r  = 1 . . . .  , n) 

where tit are the elements of the stoichiometric matrix defined in Section III.1. By 
use of the abbreviations for the effector strength and the control matrix we obtain, from 
Eqn. (4.9), 

~ citv,XtjSj, + ~ citvtJt, = 0. (4.10) 
t = l  j = l  t = l  

The fluxes and the effector strengths can be calculated from the steady state equations 
and the rate laws of the isolated enzymes, respectively. The matrix cit is known from 
the stoichiometric structure of the system. Thus, the elements of the control matrix Sj~ 
may be obtained by solving the n × m equations of type (4.10). If the control matrix 
is known the control strengths of the enzymes can be obtained by use of the 
equation 

Ci - -O]n l ) ° - - l (  ~ v j ( ~ i j ' ~ - o l n v ,  Vo j=l j=l ~ k=l~I)jXjkSki) " (4.11) 

The sum over j contains all fluxes which contribute to the total flux. 
The calculation of the control strengths may be simplified by application of the follow- 

ing fundamental theorems. 

(i) The sum of the control strengths is equal to unity. 

~ Ci = 1. (4.12) 
i=1 

This summation theorem expresses the fact that a simultaneous activation or inhibi- 
tion of all reaction velocities by the same factor leads to an equal response in the 
total flux and does not change the metabolite concentrations. 

(ii) Kacser and Burns (1973) proved a theorem which connects the control strengths 
with the effector strengths of the metabolites 

~ CiXik = 0 (k = 1,... ,m). (4.13) 
i=1 

The theorem follows from the consideration that differential changes in the concen- 
tration of a metabolite SR can be compensated by variations of the kinetic parameters 
of the enzymes which are influenced by this metabolite so that the flux remains 
unaltered. 

For metabolic systems in which the number of enzymes exceeds the number of meta- 
bolites only by one (e.g. linear enzymatic chains), theorems (i) and (ii) suffice for the 
calculation of the control strengths. In case of branches in the system the number 
of enzymes can exceed that of the metabolites by more than one and the control 
strengths of at least (n - (m + 1)) enzymes must be calculated by means of Eqns. (4.10) 
and (4.11). The remaining control strengths can be obtained by the theorems (i) and 
(ii). 
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Ottaway (1976) claimed that the summation theorem for the control strengths (4.12) 
does not hold if the concentrations of the enzymes are not much lower than those 
of the substrates. This is not correct, since the derivation of the theorem is independent 
of the kinetics of the enzymes if the general definition of the control strength (4.1) 
is used. His argument is based on the special definition (4.4) which is not applicable 
if the substrate is not in large excess. 

The influence of small changes of different parameters on the flux and the concen- 
trations of metabolites may be studied also by solving the steady state Eqns. (3.8) of 
the model on computers. Thereby the control parameters are also obtained. Such an 
analysis is sometimes called sensitivity analysis (Anderson et al., 1971). The calculation 
procedure of the control parameters by Eqns. (4.10) and (4.11) does not only work 
with fluxes obtained by a mathematical model but also with steady state fluxes derived 
from experiments. 

The elements of the control matrix may also be valuable for modeling purposes (Gar- 
finkel et al., 1976). The metabolites which are most sensitive to the fluxes should be 
measured experimentally while those with low sensitivities are less important for fixing 
the model parameters. 

(d) Control in Linear Enzymatic Chains 
The linear enzymatic chain is a sequence of first order reactions (Scheme 9). 

k I k 2 k 3 k n 

So L, S, k_~s2 ~_~ ~'k ~S. = 
Scheme 9. 

The following expression is obtained for the flux through the entire chain as a function 
of the relaxation times and the equilibrium constants of the enzymes (Heinrich and 
Rapoport, 1974a) 

So f i  qi 
i = l  v o = (4.14) 

z,+,-F ~ Zk(l + qk ) ~ qm 
k = l  m = k + l  

By differentiation of this equation one obtains for the control strengths 

Ov° %(1 + qi) (I  qj 
OTi j = i  + 1 

C i  - 

63.C i Zn+l q" Zk(1 + qk) qj 
k = l  j = l  

(4.15) 

The control strengths in this case may range from 0 to 1. For qi = 1 one gets, from 
Eqn. (4.15), 

2zi 
Ci = -- (4.16) 

%+1 + 2 ~, ~k 
k = l  

Thus, the control strength of the enzyme Ei bears a direct relation to the relaxation 
time, i.e. the slowest enzymes have the greatest influence on the flux. Reactions which 
are very fast (~---. 0) have no influence on the flux. Analysis of Eqn. (4.15) shows that 
enzymes E~ beyond a quasi-irreversible reaction E~(qs---, oo, i > s) have no influence on 
the flux (C~ = 0) even if they are slow. In particular, if the first enzyme is quasi-irrevers- 
ible it alone will determine the steady state flux through the chain if no feedback signals 
exist from the later steps. This statement is also valid for systems with enzymes which 
respond nonlinearly to substrate concentrations. This has not been fully recognized 
in the literature. Experimenters have often ascribed flux control to enzymes beyond 
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quasi-irreversible steps without proving that feedback signals exist (Maitra and Chance, 
1965; Williamson, 1965; Ghosh and Sloviter, 1973; Gos~lvez et al., 1975). Simulators 
have built rather complicated models to reach the above mentioned almost trivial result 
which could have been easily anticipated (Achs et al., 1971; Ottaway, 1976). 

(e) Control in Substrate Cycles and Branched Pathways 

Substrate cycling occurs in the glycolytic chain at the levels of the hexokinase-glucose 
6-phosphatase, phosphofructokinase-fructose 1,6-bisphosphatase and probably at the 
pyruvate kinase-phosphoenolpyruvate carboxykinase (Katz and Rognstad, 1976). The 
apparent wastefulness of the cycles has lead to speculations on their role in the regulation 
of metabolism. Evidence has been given that the generation of heat by hydrolysis of 
ATP is of importance for the bumble bee (Clark et al., 1973; Bloxham et al., 1973). 
A stabilizing effect by futile cycles on the ATP-level has been proposed by Rapoport 
et al. (1976a). For instance, a decrease of the ATP-level and concomitant increase of 
the concentrations of AMP and ADP would activate the phosphofructokinase reaction 
and inhibit the fructose 1,6-bisphosphatase reaction. Thus, futile cycling would be de- 
creased and so the ATP-waste diminished. In a further hypothesis there is assumed 
an amplifying effect by futile cycles on the flux control (Newsholme and Gevers, 1967; 
Scrutton and Utter, 1968; Hue and Hers, 1974). This hypothesis will be discussed on 
the basis of the Schemes 10 and 11. The Scheme 11 for a futile cycle becomes virtually 
identical with that for a branched pathway (Scheme 10) if ATP, ADP and Pi have 

E, IE E 2 .  , _ ATP A<~P 
3 So S, 

v2 
Scheme 10. E~-~ , , , /  

P, 
Scheme 1 I. 

no influence on the reaction rates and if So is held constant. If the enzymes E2 and 
E 3 are linearly dependent on their substrate S~ we get by application of the theorems 
(i) and (ii) of Section IV.2.(c) for the control strengths with respect to the outflow 
92 

C 2 + C 3 = 0 ,  C 1 =  1. 

Furthermore, Eqns. (4.10) and (4.11) yield 

C 2 - -  C 3 93 = - - -  < 1. (4.17) 
92 q- v a 

Obviously, in this case all enzymes have control strengths between 0 and 1 and 
there is no amplifying effect. However, if E 3 is saturated by the concentration of its 
substrate S~ one obtains 

C 2 = 0 ,  C1 + C a  = 1 (4.18) 

and by Eqns. (4.10) and (4.11) 

C3 = / 3 3  __ 93 (4.19) 
U 1 - - O  3 92 

Now C1 and Ca may assume any value. They become very large if the net flux 
v2 is small compared to vl and v3. For futile cycles this means that an amplifying 
effect is possible provided that the cycle flux is greater than the net outflux. The regula- 
tory advantage is paid for a high ATP-waste. An amplifying effect is only possible 
if the backward reaction $1 ~ So depends only weakly or not at all on the concentration 
of the substrate S1 (see Eqns. (4.17) and (4.19)). If one assumes So to be produced 
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by a constant influx (Newholme, 1975) the net outflux in the steady state is independent 
from the activation state of the cycle enzymes which only affects the cycle flux and 
the ATP-waste and there is no amplification. 

3. Changes of Metabolite Concentrations as Indicators of Control Sites 
in Enzymatic Systems: A Critical Discussion 

(a) The Deviation of the Mass Action Ratio from the Equilibrium Constant 

The relation between the velocity vi of an enzyme Ei and the concentrations of its 
reactants, given in Eqn. (3.4), may also be written in the following way 

Fi vi 
- - =  1 - (4.20) 

qi kiRi(Sk) [I Sj 
j ,  substrates 

In this equation F~ is the mass action ratio, q~ the equilibrium constant of the enzyme 
Ei and Ri the regulating factor. We shall discuss here the conclusions which may be 
drawn from this relation for an enzyme which is part of a metabolic system in the 
steady state. At first sight it would appear that Eqn. (4.20) indicates a direct relation 
between the deviation from equilibrium and the flux through an enzyme. However, 
this relationship is only indirect since it is also influenced by the concentrations of 
the reactants. Changes of flux which are caused by alteration of the kinetic parameters 
generally also are accompanied by variations of the concentrations of the metabolites. 
Therefore Eqn. (4.20) does not permit to draw definite conclusions. 

This may be illustrated by the following simple reaction system 

vnl, S1 ~ S 2 *r-y-, " 

where the reactions are described by first order rate constants and the input v0 is 
independent from $1 and $2. From Eqn. (4.20) we obtain 

/'1 Vo 
- -  i . ( 4 . 2 1 )  

ql klS1 

Since in the steady state 

one obtains 

[k_ 1 + k2"~ 
S, = ~ -k~-k2 )vo (4.22) 

F 1 1 
q, - 1 + (k2/k_,)" (4.23) 

In this case the deviation of the mass action ratio from the equilibrium constant 
is entirely independent from the flux and is only a function of the kinetic parameters 
of the enzymes E1 and E2. Heinrich and Rapoport (1974a) proved that in linear enzyme 
systems which contain only reactions of the first order the mass action ratio of an 
enzyme is generally independent from the kinetic parameters of all enzymes preceding 
it. Keeping in mind that the first enzymes exert the main control of the flux in a 
linear chain one may conclude that a direct connection between the mass action ratio 
and the control strength of an enzyme, as often claimed in the literature, does not 
exist. Enzymes catalyzing reactions which deviate greatly from equilibrium need not 
exert any control on the metabolic flux (see Section IV.2.(d)). The deviation of the 
mass action ratio from the equilibrium constant indicates only that the enzyme has 
an influence on the concentrations of metabolites, i.e. it has elements in the control 
matrix which are unequal to zero. 
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If one replaces k_ 1 in Eqn. (4.23) by the relaxation time and the equilibrium constant 
(see Eqns. (3.3) and 3.51b)) one obtains 

F1 1 - (4.24) 
ql 1 + k2zl(1 + ql)" 

It may be seen that the larger the equilibrium constant of the enzyme the greater 
is the deviation of the reaction from equilibrium. This has been proved generally for 
linear systems of reactions (Heinrich and Rapoport, 1974a). It explains why many reac- 
tions with ATP as reaction partner show large deviations from the equilibrium constant 
(Minakami and Yoshikawa, 1966). 

From Eqns. (4.15) and (4.24) it follows that enzymes which are so fas t  that they 
do not show deviations from equilibrium (small z-values) also cannot influence the 
flux. This statement is in contrast to the generally accepted possibility of rate control 
by equilibrium enzymes (Hales, 1967; Krebs, 1969; Newholme and Start, 1973). The 
argumentation in the literature is illustrated by the following model (Newsholme and 
Start, 1973) (see Scheme 12). 

S ,,_ A.~.-~B.,,,--...--~C.~--.-.-~ p..,m-~-.~ p '  

X Y 
Scheme 12. 

The assumptions implicit in this model are as follows: 

(i) All reactions between A and P are close to equilibrium. 
(ii) The product P is removed to P' by a non-equilibrium reaction at a rate which 

is proportional to the concentration of P. 
(iii) The compound A is produced by a non-equilibrium reaction which is controlled 

in such a way that the concentration of A remains constant. 
(iv) X and Yare cofactors for the reaction A ,---, B and the total cofactor concentration 

X + Y remains constant. 

If the concentration of X is increased and that of Y correspondingly decreased, an 
increase of B and consequently of P results. Therefore the flux to P' is increased. It 
is concluded that the pathway S---~ P' has responded to the change in the regulator 
concentrations (X and Y) via a reaction which is near to equilibrium. 

The error in this argumentation is due to assumption (iii). For A to remain constant 
the reaction S--~ A must be activated. The changes of X and Y can change the flux 
through the pathway only if a feedback signal exists to the reaction producing A. There- 
fore the flux regulation is actually exerted by a non-equilibrium enzyme. On the other 
hand, the example demonstrates that changes of metabolite concentrations can be pro- 
duced by variations of the partners of a near-equilibrium reaction. This is, however, 
no regulation by, but rather via, an equilibrium enzyme. 

The equilibria undoubtedly may play an important role in the transmission of the 
state of one pathway to another. The consequences depend on the effects of the partners 
of an equilibrium on the regulatory enzymes. Equilibria can also be used as diagnostica 
for the state of a system (Krebs, 1969; Krebs and Veech, 1969; Gumaa et al., 1971; 
Safer and Williamson, 1973). 

(b) Identification of Interaction Sites of  Effectors with an Enzymatic Chain; the Crossover- 
and Fault-Theorems 

A central problem in the study of metabolic systems is the identification of interaction 
sites of external effectors. The experimental procedure is most often the investigation 
of the response of a system to external effectors as indicated by changes of metabolites. 
For this purpose commonly the crossover theorem is applied which has been formulated 
originally by Chance and coworkers (Chance and Williams, 1955a,b; 1965a,b; Chance 
et al., 1958) and utilized by them for the identification of the phosphorylation sites 
in the respiratory chain. Holmes (1959) was the first to prove the crossover theorem 

LP.~. 32/I o 
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FIG. 16. Crossover plot for a linear enzymatic chain. The graph gives the relative changes of 
the metabolite concentrations versus the sequence of the metabolites after interaction of an 

activator with the enzyme Ej. 

for a number of simple chemical chains of reactions. In its simplest form the classical 
crossover theorem can be stated in the following way: The changes of the steady state 
concentrations of the metabolites beyond and before an enzyme which is influenced by 
an effector have different signs. For the detection of crossovers a graph is constructed 
by plotting the percentual changes of the concentrations of the intermediate metabolites 
after the addition of an effector versus their sequence in an enzymatic chain. This graph 
is called a crossover-plot (Fig. 16). Points at which the graph crosses the axis are called 
crossover-points. Theoretically, the crossover theorem is based on the fault-theorem which 
has been analyzed mainly by Higgins (1974)*. It is derived from the concept of generalized 
reactions, for which only the monotonicity properties of the rate equations are required. 
The generalized rate equation for the reaction 

activators 

substrates ~_ ' products 
Te 

inhibitors 
may be written as 

v = v (substrates, activators/products, inhibitors). (4.25) 

Equation (4.25) is an abbreviated formulation of the fact that elevations of the concen- 
trations of substrates and activators increase the velocity whereas elevations of the con- 
centrations of products and inhibitors decrease it. Table 4 gives for a generalized mono- 
molecular reaction the signs of the changes of the reactants and the flux which may 
be experimentally measured. All changes except those indicated as "fault" are consistent 
with the monotonicity properties of the rate equation. If a fault occurs, either the rate 
equation is wrong or incomplete, i.e. some other agent is affecting the rate of that 
reaction. For instance, if one observes that the net flux through the reaction diminishes 
whereas the substrate increases and the product decreases it may be concluded that 
an additional inhibitor must be interacting With the enzyme. The fault theorem can 
be applied regardless of the complexity of the entire enzyme system. It can be used 
with time dependent processes provided that the individual net reaction velocities can 
be measured. Compared with the crossover theorem it does not give rise to erroneous 
assumptions of interaction sites. However, owing to its qualitative nature the fault 
theorem does not identify all interaction sites. If there is more than one interaction 
site the weaker ones may fail to show up as faults. 

*Higgins has written up a detailed investigation on the crossover and fault theorems (personal communica- 
tion) but to our knowledge has not published it. 
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TABLE 4. CHANGES OF THE FLUX l) AND OF 

THE CONCENTRATIONS OF THE SUBSTRATE 

S AND OF THE PRODUCT e FOR A GENERA- 

LIZED MONOMOLECULAR REACTION S ~ P 

Av AS mP 

+ + + 
+ + - 

+ - + fault 
- + + 

- + - fault 

( + )  signs indicate an increase and ( - )  
signs indicate a decrease. Changes of the 
metabolite concentrations which are not  
denoted by "fault" are compatible with 

the change of the flux. 

Another method for the determination of interaction sites which uses a quantitative 
formulation of the rate equations with respect to substrates, products and known acti- 
vators and inhibitors was proposed by Heinrich and Rapoport (1974b). If the insertion 
of the experimental changes of flux and concentrations leads to changed values of the 
kinetic parameters of the enzymes an interaction with an effector is indicated. The 
quantitative formulation allows the identification of effector interactions even if the 
extreme case of a fault is not observed. 

As an example of the application of the fault and crossover theorems we consider 
an enzyme sequence and the interaction of an activator AI at one site (Fig. 17). It 
is presupposed that all reactions except for the final step are reversible. The concen- 
tration of the first metabolite is assumed to be constant. After the interaction of the 
activator the metabolite concentrations change and assume new steady state values. 
The signs in Fig. 17 indicate the direction of the changes of the metabolites. It can 
be easily demonstrated in the case of validity of the generalized rate law (4.25) for 
the enzymes of the sequence that the concentrations of all metabolites beyond the inter- 
action site increase, while those of the metabolites preceding it decrease. In as much 
as the net flux through the enzymatic chain increases, a crossover appears which is 
a fault (see Table 4) because the influence of the activators had not been specifically 
included in the generalized rate law. In this case, therefore, the occurrence of a crossover 
identifies the interaction site of an effector. However, the crossover theorem may be 
quite misleading in more complicated situations, e.g. with an effector acting at more 
than one site. A crossover may not appear at an affected enzyme, or pseudo-crossovers 
may occur at unaffected enzymes. 

As an example, for these possibilities we consider again a linear enzyme sequence 
and the interaction of an activator A2 at two different sites (Fig. 17). It is seen that 
three different crossover patterns may be obtained. Which possibility is observed depends 
on the ratio of the effector strengths of the activator at the two different sites and 
the control parameters of the enzymes (Heinrich and Rapoport, 1974b). If one of the 

I 
I 

o~ - - -  t + + + 
so------sr---~sz---=- t~-- T -  s,---..- s s 

I J 

a) + "~ + + - 4 -  + 

FIG. 17. Crossover pattern for the interaction of activators with a linear enzymatic chain. The 
action of the activator A1 produces the pattern (a). The activator A2 acting simultaneously 

on two enzymes produces one of the patterns (b)-(d~ 
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interactions is much stronger than the other either pattern (b) or (d) will be observed. 
There will be only one crossover at that enzyme which is more strongly affected. If 
the effector strengths are comparable crossovers may appear at both sites if the enzymes 
between them are slow with control strengths unequal to zero. In this case (pattern 
(c) in Fig. 17) a third crossover occurs which is not a fault as may be seen from Table 
4. 

The theorem may be also quite misleading if systems involving conservation quantities 
are considered. Figure 18 shows an enzymatic system which contains a loop. It may 
be seen easily that for all changes of enzyme parameters the sum of the metabolites 
concentrations which belong to the loop must be conserved. This means that an increase 
of some metabolites of the cycle must be compensated by a decrease of others. Figure 
18 shows the changes of the metabolite concentrations for the case that the first enzyme 
which does not belong to the cycle is activated. It is seen that two pseudo-crossovers 
occur within the loop at the enzymes E2 and Es. Pseudo-crossovers may also appear 
in systems involving the action of inner effectors (feedback activation or inhibition etc.; 
Higgins, J. personal communication). Furthermore, the limitations of the application 
of the crossover theorem are apparent if one considers systems where metal ions (e.g. 
Mg 2+) form complexes with the metabolites (Heinrich and Rapoport, 1974b). 

6 + E~ + 6 * ~ + ~s 

- -  4 -  

F I G .  18. Crossover pattern for an enzymatic system containing a loop. The activator A acts 
on the first enzyme El. At the enzyme E6 a crossover is produoed which is not indicative 

for an interaction of the enzyme with an effector. 

The essential conclusion of the work by Higgins (1974) and Heinrich and Rapoport 
(1974b) is that experimenters should be warned against the uncritical use of the crossover 
theorem. It may be applicable for systems which are well known for which a new 
interacting agent is tested. Usually, the fault theorem and if possible, its quantitative 
extension, is to be preferred. Although the crossover theorem was originally developed 
for transitions from one steady state to another, it was also used for time dependent 
processes (Williamson, 1965) by comparing the metabolite concentrations at two different 
times. This extension lacks any theoretical basis. Crossovers in time dependent processes 
may occur without any action of an effector e.g. just by adding an intermediate and 
observing its degradation through a sequence of reactions. Crossovers also generally 
appear in oscillating reactions. 

4. Control of  Transient Processes 

In this section we are concerned with the question: what determines the overall rate 
of the changes of metabolites during relaxation processes? In order to proceed with 
the answer one has to define a transition time. Although the reciprocals of the eigenva- 
lues do have the dimension of time, they are not suitable in this context, since they 
define the relaxation of the whole system rather than that of individual metabolites. 
A suitable measure for the characterization of the rate of transition of a metabolite 
to a stable steady state has been proposed by Heinrich and Rapoport (1975). A transition 
time for the metabolite Si is defined as follows 

fi ° tcri(t) dt  T~ 
zi = - (4.26) 

o° Cri(t) dt  li  

where the perturbation terms a~(t) = St(t) - S°(S°--final steady state value of S~) are 
called in this connection relaxation functions. For t--* ~ the terms ¢r,(t) tends to zero. 
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The relaxation functions may be considered as weighting factors of the time t. The 
applicability of expression (4.26) is limited by the requirement that the relaxation func- 
tions do not change their sign during the process. Otherwise, negative weighting factors 
would occur in the integrals. Therefore, this definition is meaningless for processes which 
involve damped oscillations, overshoots or undershoots. The transient control Kij of 
an enzyme E~ may be defined by the influence of its activity v i on the transition time 
of the metabolite St 

t~ In ~t (4.27) 
Ku = a In v j" 

It is positive, if an activation of the enzyme leads to a decrease of the transition time, 
otherwise it is negative. The following summation theorem holds 

~ Ktj = 1. (4.28) 
j = l  

It is based on the consideration that a simultaneous activation or inhibition of all 
enzymes by the same factor leads to equal changes in the transition times of all metabo- 
lites. Similar considerations have led to the summation theorem for the control strengths 
(Eqn. (4.12)). 

A simple calculation procedure for ~t can be employed which does not involve the 
integration of the differential equations if only small deviations from the steady state 
are considered. Integration of the linearized equation (3.9) yields 

fo °°dat f0 ~ -d-i- dt  = - ai(O) = ~ Ark ak dt =- ~'k Atklk. (4.29) 

Furthermore, using well-known integration rules we have 

fo fo ° at dt  = tat(t) o - ~k Ark ttr k dt.  (4.30) 

The terms ttrt(t)/~ may be neglected since a,(t) decreases more than 1/t with increasing 
time. Thus, the integrals It and T~ which enter Eqn. (4.26) can be calculated by solving 
the following linear equation system 

-- at(O ) = ~ AtkI k (4.31) 
k=l 

- It = Z AtkTk. (4.32) 
k=l 

The calculation procedure can be applied without approximation to systems of first 
order reactions. Application to Eqn. (3.49) which describes the relaxation of an isolated 
reaction yields immediately the relaxation time of this process. 

It may be shown (Heinrich and Rapoport, 1975) that for a linear sequence of irrevers- 
ible reactions the expression for ~k of a metabolite Sk is simply the sum of the relaxation 
times of the individual reactions 

k 
~k = ~ Zt (k_> j) (4.33) 

t=j 

where the index j indicates the site of the initial perturbation. Consequently, the slowest 
enzyme will have the greatest transient control. The theoretical formulas are in accord 
with the experiments of Wurster and Hess (1970) and Barwell and Hess (1970). Figure 
19 shows the time dependencies of the metabolites of a linear enzymatic chain with 
four components and the transition times calculated by formula (4.26). 

The transition time may also be used for real nonlinear systems by replacing the 
integrals by sums and calculating the ~t during the integration. The upper limits of 
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FIG. 19. Time dependencies of the concentrations and transition times ÷i of the metabolites 
Sl of a linear enzymatic chain after perturbation of the steady state. At t = 0 all metabolites 
were  in the steady state (Si = S °) except the first metabolite which was raised two-fold. Parameter 

values:  v0 = 1, kl  = 1, k2 = 1, ka = 2, k4 = 0.5. 

the integrals can be chosen so that ai /S  ° is less than the e~perimental error of the 
determination of the metabolite Si (Rapoport et al., 1976a). 

The time of relaxation of the whole system may be quite different from that of the 
slowest enzyme. As an example we consider the linear system depicted in Scheme 13 
which obeys the following differential equations 

dS1 
dt  = vo - k tS1  - k2S1 + k_ 2S2 (4.34a) 

dS2 
- k2S1 - k_  2S2 . (4.34b) 

dt 

Assuming k2, k_ 2 ~ kl one gets by application of the steady state approximation 
(Section III.5(b)) 

dS1 Vo k l S l  k2 
d--t-= 1 + q2 1 + q2' q2 = k_ 2 • (4.35) 

It is seen that the relaxation time of this process 

.~ _ 1 + q2 (4.36) 
kx 

is strongly influenced I~y the equilibrium constant of the fast reaction and may be 
much greater than l /k1,  the relaxation time of the slowest enzyme, if q >~ 1. The biologi- 
cal significance of Scheme 13 may be discussed for the synthesis and breakdown of 
cAMP (Newsholme and Start, 1973). S~ may stand for cAMP, E 0 for the adenylate 
cyclase, Et for the diesterase and $2 may be the complex of protein kinase and cAMP. 

E°'V° -~ S El 'kl : 

$e 
Scheme 13. 
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Reaction 2 is a non-enzymatical binding reaction. From the considerations given above 
it follows that the binding of cAMP to the protein kinase should not be too strong 
since otherwise its relaxation would be very slow and the cell could not respond to 
fast changes in the hormonal environment. Weak binding on the other hand means 
that only a small amount of enzyme can be activated and this is probably one reason 
for the existence of a cascade of activations in glycogen breakdown. 

The transient control has to be distinguished clearly from the control parameters 
for the steady state. Enzymes which have a great influence on the transition time may 
be unimportant for the flux control in the steady state and vice versa. This statement 
is exemplified by Scheme 13, considered above. The steady state flux is determined 
by the enzyme E0 alone whereas the transition control is exerted exclusively by the 
enzyme E 1 (under steady state approximation). Thus the relaxation of a metabolite 
depends primarily on the succeeding enzyme while the rate of formation of the metabo- 
lite has no influence. 

V. MODELS OF THE GLYCOLYTIC SYSTEM 

The methods and general considerations presented in the preceding sections will be 
applied to a real metabolic system in this section. 

The glycolytic system is by far the best known metabolic pathway. Many enzymes 
from various sources have been purified and characterized kinetically and there exist 
reliable data on all metabolite concentrations. In many cells under usual conditions 
the glycolytic pathway interacts with other pathways such as respiration, gluconeogenesis 
and the oxidative pentose pathway. Thus, its regularities are obscured and the attempts 
to apply simple models are foiled by their inadequacy. For such reasons the choice 
of appropriate simple biological systems is of great importance. Several biological sys- 
tems possess nearly uncontaminated glycolytic pathway. First, mature mammalian eryth- 
rocytes the metabolism of which is reduced to glycolysis only with a minor contribution 
of the oxidative pentose pathway (Jacobasch et al., 1974). They offer the additional 
advantage of the absence of organelles. Their enzymes and metabolites have been studied 
under a variety of conditions. Further systems are ascites tumor cells under anaerobic 
conditions (Schulz et al., 1977) and anaerobic yeast cells. 

One may also mention the eye lens, fetal liver and spermia which, however, have 
not been studied extensively. 

Erythrocytes are probably the best object for the study of "pure" glycolysis. Any 
biological object has its particular properties and extensions to other systems are there- 
fore not trivial. The main purpose of the section is to illustrate general statements 
and to show the regulatory principles of glycolysis. The fit of the model to the experimen- 
tal data will not be considered in detail. Comparison with the data can be found in 
the original literature (Rapoport et al., 1974; Rapoport et al., 1976a) and is generally 
satisfactory. 

1. The Glycolysis of  Erythrocytes 

(a) Specification of  the Model and Assumptions 
Figure 20 shows the scheme for the model of erythrocyte glycolysis. It includes the 

2,3-bisphosphoglycerate bypass which is a characteristic feature of most mammalian 
erythrocytes. The oxidative pentose pathway has been disregarded whereas adenylate 
kinase and ATP-consuming processes were included. Processes which change the total 
amount of adenine or pyridine nucleotides were neglected because of their slowness 
(Lowy et al., 1958). Conservation equations for these substances result. Non-equilibrium 
enzymes which are of regulatory importance include the hexokinase, phosphofructo- 
kinase, pyruvate-kinase, bisphosphoglycerate-mutase, 2,3-bisphosphoglycerate phospha- 
tase and the non-glycolytic ATP-consuming processes (ATPase). For these enzymes 
simple rate laws were assumed (Table 5). All other enzymes represented in the model 
were assumed to be near to equilibrium. The most important interactions of metabolites 
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FiG. 20. Scheme for glycolysis in erythrocytes considered for the model. Arrows in both direc- 
tions indicate reactions near to equilibrium. Arrows in one direction refer to practically irrevers- 
ible reactions. The broken lines indicate activations ( + ) or inhibitions ( - ) of enzymes by metabo- 

lites, which were taken into account for the model. 

with enzymes were included in the model: the inhibition of the hexokinase by glucose-6- 
phosphate, ATP-inhibition and AMP-activation of the phosphofructokinase and the 
inhibition of the bisphosphoglycerate-mutase by 2,3-bisphosphoglycerate. Reasons for 
the neglect of other interactions have been given (Rapoport et al., 1974). In general, 
the rate laws and the parameter values of the enzymes correspond to those found for 
the isolated proteins in vitro. For the 2,3-bisphosphoglycerate phosphatase a rate law 
has been used which was established in vivo. In vitro data are difficult 'to apply owing 
to the complexity of the 2,3-bisphosphoglycerate-degradation (Harkness et al., 1970; 
Rosa et al., 1975; Sasaki et al., 1975). For the ATPase a simplified ad hoc rate law 
was employed since the ATP-consuming processes are heterogeneous (Nakao, 1974) 
and an overall rate law has not been obtained so far. The hexokinase and phosphofructo- 
kinase have been lumped into one subsystem with a single response to the adenine 
nucleotides. An inherent assumption is that glucose 6-phosphate and fructose 6-phos- 
phate are always in a quasi-steady state. It is justified by two considerations: first, 
glucose 6-phosphate and fructose 6-phosphate are near equilibrium owing to the rapidity 
of the hexose phosphate isomerase reaction, secondly by the low relaxation time of 
the phosphofructokinase (Table 6), which mainly determines the relaxation time of these 
metabolites. The net response of the hexokinase-phosphofructokinase-system to the 
ATP-concentration has been calculated from the kinetics of the individual enzymes 
(Fig. 21). The hexokinase displays an approximate Michaelis-Menten function with re- 
spect to ATP up to 2.0 mM (water basis). The phosphofructokinase is activated at low 
ATP-concentrations and inhibited allosterically at higher ones. Owing to the conserva- 
tion equation a change of the ATP-concentration acts on the phosphofructokinase not 

TABLE 5, RATE LAWS ASSUMED FOR THE VARIOUS ENZYMIC STEPS OF THE GLYCOLYTPC MODEL 

Enzyme Rate law Comments 

Vm, [ATP]/KA The parameters in this rate law obtained by 
fitting to the net flux curve in Fig. 21 

hexokinase- 
phosphofructo- 
kinase system 

pyruvate kinase 

bisphospho 
glycerate 
mutase 

2, 3-bisphospho 
glycerate 
phosphatase 

ATPase 

UHK_PF K 
1 + [ATP3/K A + (['ATP]/KI) 

VpK = kpK [ADP] [P - Pyr] 

kP2GM [1, 3 P2G] 
vP2Gu = 1 + [2, 3 P2G]/Kp2~ 

kp26ase [2, 3 P2 G] 
VP2Gase = kp2Gase -t- [2, 3 P2G] 

VA.r~,~,, = kArp_[ATP] 

The rate law differs from that used previously 
(Rapoport et al., 1976a). It is based on new 
experimental data (Rapoport et al., 1976b) 
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TABLE 6. RELAXATION TIMES OF THE NON-EQUILIBRIUM 
ENZYMES 

Enzyme Relaxation time 

hexokinase--phosphofructokinase 
system 1.5 h 

ATPase 0.5 h 
pyruvate kinase 28 s 
P2G-bypass§ 9.3 h 
2,3 bisphosphoglycerate mutase§ 3.9 s 
hexokinase'~ 0.6 h 
phosphofructokinaset 74 s 

The relaxation times were calculated from the rate laws 
v(Si), z is for a one substrate reaction (dv/OS)-1 and 
for a two substrate reaction [(av/dSl) + (dv/dS2)]-1. 

§ The relaxation time of the bypass was calculated 
by linearization of the differential equation for 2,3-bis- 
phosphoglycerate (Eqn. (5.2)) with respect to 2,3-bis- 
phosphoglycerate. For the 2,3-bisphosphoglycerate 
phosphatase no relaxation time can be calculated since 
this enzyme is practically saturated with its substrate. 

t The relaxation times of the individual enzymes are 
shorter than those of the system owing to the glucose-6- 
phosphate inhibition of the hexokinase. 

only by a variation of its inhibitory effect but also by virtue of the complementary 
changes of AMP. Fructose 6-phosphate has an activating influence on the phospho- 
fructokinase. Both the hexokinase and phosphofructokinase curves were calculated from 
established kinetic models (Gerber et  al., 1974 and Otto et  al., 1974, respectively). The 
net flux through the hexokinase-phosphofructokinase system which is identical with 
the steady state glycolytic flux is given by the intersection of the individual curves. 
The net curve displays a maximum. Under in vivo conditions the flux is inhibited by 
an increase of the ATP-concentration. 

A similar conclusion has been drawn recently by Ataullakhanov et  al. (1977). They 
constructed the ATP-dependence of the glycolytic flux in erythrocytes by means of 
a computer and obtained qualitatively the same curves as shown in Fig. 21. Quantitative 
differences appear to be due to their assumption of a stronger glucose 6-phosphate 
inhibition of the hexokinase. 

The dynamics of the glycolytic system is described by a system of ordinary differential 
equations. For  every metabolite one equation can be written which takes into account 
its formation and degradation. Considering the time hierarchy (Section 111.5) the system 
of differential equations can be reduced by eliminating the fast equilibrium reactions. 
The glycolytic system can thus be described by only four differential equations which 
have the following form: 

d 
~-~ (2[FP2] + [TP]  + [1.3P2G] + [3PG] + [2PG] + [PPyr] )  

= 2/)HK_PF K - -  /)P2GM q- ~2P2Gase - -  t)pK (5.1) 

d[2.3P2G] 
dt - Vp2GM - -  vP2 Gase (5.2) 

d 
td -- : (2[ATP] + [ADP] + 2[FP2] + [TP]  + [1.3P2G]) 

: - -  DP2GM + V P K - -  VATPase ( 5 . 3 )  

d 
~ ( [ L a c ]  + [Pyr] )  = VpK- /)exchange. (5.4) 
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FiG. 21. Construction of the ATP-response of the hexokinase-phosphofructokinase system. 
The concentrations in the figure are given per fitre of water. For the calculation of the hexokinase 
curves the kinetic model and the parameter values given by Gerber et al. (1974) were used. 
For the phosphofructokinase the following rate law was employed (see Otto et a l. (1974)): 

0.4[G6P] [MgATP] 

KF KM~ ATP 1 
V ~  = Vm.~ ( o.4t 6 i (, r gAT,>1_   + L 

1 + KF J \  + KMgATP ,] 

L =  Lo 
(1 0'4[G6P]`]*(1 [AMP]']" 

The following parameter values were used (given per litre water) V,,, =250mMh -1, 
KMgArp = 68/~M, Kv = 100#M, KATP = 10#M, KM~ = 440#M, KAMp = 33gin, Lo = 0.05.ZA and 

2+ Mgtota I were held fixed at 2.0mM. Only the complex formation of Mg 2+ and ATP was 
taken into account (K,s s = 12.3mM-1). The concentration of AMP was calculated from the 
adenylate kinase equilibrium. The in vivo-point is characterized by the following concentrations 
of the metabolites which are given per litre of cells (experimental values in parenthesis, see also 
Gerber et al. (1973)): [ATP]tot~I = 1.12mM (1.2), [MgATP] =0.99mM (1,05), [ATP]fr~ ~ 
= 0.13 mm(0.13), [AMP] = 0.1 mM(0.05), [G6P] = 73/~M (44), Flux = 1.05 na~h- t (1.1). The net 
response of the system was fitted with the equation given in Table 5. In the calculations with 

the whole glycolytic system ATP corresponds to ATPto,, ~ of this detailed simulation. 

/)exchange d e n o t e s  the  e x c h a n g e  ra te  of  p y r u v a t e  a n d  l ac ta t e  w i t h  o t h e r  t issues  o f  the  

body.  E q u a t i o n  (5.3) is the  resu l t  o f  th ree  d i f ferent ia l  e q u a t i o n s  

d [ A T P ]  

dt  
- -  - -  2VHK_PF K "t- /)PK -I- U+PGK - U-PGK"{- V+AK - V-A K -  /)A'rPase (5 .5)  

d [ A D P ]  

d t  
2VriK--PHK- V P K -  /)PGK + I)-PGK-- 2/)+AX + 2/)-AK+ /)ATPase (5.6) 

d 
/) PGK--  /)-PGK "l- /)P2Gase - -  /)PK ~-~ ( [ -3PG] + [ 2 P G 1  + I -PPyr l )  = ÷ (5.7) 

whe re  the  + a n d  - s igns ind ica t e  the  fast  f o r w a r d  a n d  b a c k w a r d  reac t ions ,  respec t ive ly ,  
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of the steps near to equilibrium. From these three differential equations a slow motion 
is extracted (see Section III.5(b)) 

d 
(2[ATP] + [ADP] - [3PG] - [2PG] - [PPyr]) 

= -2VHK-~FK + 2VpK- VATPase -- VP2oas~" (5.8) 

Finally, Eqn. (5.8) is added to Eqn. (5.1) yielding Eqn. (5.3), Analogously, Eqns. (5.1) 
and (5.4) were obtained by eliminating the fast reactions on the right side of the differen- 
tial equations. There are four essential dynamic variables in the glycolytic system of 
glycolysis. (a) the pool of phosphorylated intermediates between the phosphofructokinase 
and pyruvatekinase (Eqn. (5.1)), (b) 2,3-bisphosphoglycerate (Eqn. (5.2)), (c) the pool 
of the energy rich phosphate compounds (Eqn. (5.3)) and (d) the pool of pyruvate and 
lactate. The essential dynamic variables are connected with the actual metabolites by 
equilibria and conservation relations. The following equilibria must be considered 

[F6P] [GAP] [GAP] 
qPcl - [G6P] '  qgld -- [FP2] '  qTlu = [DHAP] 

[1.3P2G] [NADH] 
[P~] q GAPO = q'GAaD = [GAP] [NAD +] 

[3PG] [ATP] [2PG] (5.9) 

qPGK = [1.3P2G][ADP]'  q P G M  - -  [3PG] 

[PPyr] [Lac] [NAD + ] [ADP] 2 
qE,o, - [ 2 P G ] '  qLDn = [Pyr ] [NADH] '  qA~: = [ATP][AMP]" 

On the basis of the conservation equation for the adenine nucleotides and the 
equilibrium relation for the adenylate kinase reaction the following equations can be 
obtained which express ADP and AMP as a function of ATP 

qAK[ATP] + 4 A 

[AMP] = A - [ATP] - [ADP].  (5.10b) 

By a transformation, the essential dynamic variables can now be expressed by four 
independent metabolites which may be used instead. Thus, the dynamics of only four 
metabolites characterizes the dynamics of the whole system and the time dependences 
of the other metabolites can easily be deduced. For methodical convenience the four 
independent metabolites recommended are ATP, 2,3-bisphosphoglycerate, 3-phosphogly- 
cerate, and lactate. Of course, there may be substitutions, such as AMP or ADP for 
ATP, phosphoenolpyruvate or 2-phosphoglycerate for 3-phosphoglycerate and the glyco- 
lytic flux for lactate. In conditions where the hexokinase-phosphofructokinase system 
is not in a quasi-steady state glucose 6-phosphate or fructose 6-phosphate would have 
to be added as the fifth independent variable to characterize the interrelation between 
the two enzymes. 

(b) Properties of the Steady States 

In Fig. 22 are represented the steady state solutions of ATP and the fluxes versus 
the first order rate constant of the ATP-consuming processes. The points in the figure 
indicate the situation in vivo. Their position corresponds to the parameter set which 
gives the best agreement with the experimental data (see legend to Fig. 22). The dotted 
parts of the curves indicate unstable steady states. There is only a limited parameter 
range for which non-zero stationary solutions exist. If the rate constant kAavas¢ is in- 
creased too much only the trivial solution [ATP] = 0 remains. There is also a lower 
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FIG. 22. ATP-concentration and fluxes in the steady state as functions of the rate constant 
of the ATPase (kmv,,e)- The ol denote fluxes specified by the superscript. The curves were calcu- 
lated with the following parameter values: kp2GM=l.1 x 10Sh - t ,  /q ,~=~,=2.13h -1, 
kpz = 0.67h -1, qEnolqPGMqr~r = 300, Ke=6 = 40/~M, Kp~=,¢ = 300#M, WFZ = 2.9mMh - l ,  
KA = 1168/~, K~ = 1241 #ra, n = 12, ~ZA = 1 .4m~ At the in vivo-point (kAav=,= = 1.23h -1) 
the following concentrations of the metabolites were calculated (experimental values in paren- 
thesis): [ATP] = 1.22ram (1.2), [ADP] = 144#u (185), [AMP] = 34/a~ (50), [2,3 
P2G] = 4.49rnM (4.7), [P-Pyr] = 2 1 / ~  (26), [1,3 P2G] = 0.58/al (0.5), Flux = 1.05mMh -~ 

(1.1 r r~  h- t ) .  The dotted parts of the curves indicate unstable steady states. 

limit for the kAavas=-values. Two mechanisms, the first non-stoichiometric and the second 
stoichiometric, contribute to the relative constancy of ATP in the region of physiological 
interest. The first one is connected with the ATP-inhibition and AMP-activation of 
the phosphofructokinase. If kmpase is increased, the concentration of AMP rises and 
that of ATP falls. This leads to an activation of the phosphofructokinase and, via the 
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FIG. 23. hTP-concentration as a function of the rate of the non-glycolytic hTP-consuming 
processes (VAav,~=) for erythrocytes from various species. The parameter values for the enzymes 
of different species were taken from Jacobasch 0970) and Rapoport  et al. (1976a). The points 

give the in vivo-points for the cells. 
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inhibition of the hexokinase by glucose 6-phosphate, to an increased glucose consump- 
tion (Fig. 22). The higher flux produces more ATP in the lower part of the glycolytic 
chain and so compensates for the increased rate of ATPase. The second mechanism 
is of lesser importance and is connected with the 2,3-bisphosphog!ycerate-bypass. The 
increase of kA~ase leads also to a higher ADP-concentration and to a lowered concen- 
tration of 1,3-bisphosphoglycerate and a smaller rate of the bisphosphoglycerate-mutase 
(Fig. 22). The compensatory increase of the flux through the phosphoglycerate kinase 
leads to an additional ATP-production and again the ATP-level is stabilized. 

Figure 23 gives plots of the ATP-concentration versus the rate of the ATP-consuming 
processes (not their rate constant) for the erythrocytes of various animal species. The 
curves display a maximum in the ATP-consumption rate. 

The localization of the in vivo points is of interest (see Fig. 23). The points lie all 
near to the maxima of the curves, so that about 85% of the maximally possible work 
is performed. This represents probably an evolutionary adaptation. This is clearly differ- 
ent from cells which are geared for great changes in the ATP-need (e.g. muscle cells). 
Erythrocytes can, however, do more work during the quasi-steady state period at unre- 
laxed concentrations of 2,3-bisphosphoglycerate (see below) than in the steady state. 

(c) Time Dependent Processes; The Existence of Quasi-Steadfp States 

The glycolytic system is characterized by a pronounced time hierarchy of the reactions. 
Table 6 gives the calculated relaxation times of the non-equilibrium enzymes. They 
vary over almost four orders of magnitude. Accordingly, the eigenvalues of the system 
calculated at the in vivo point differ by more than two orders of magnitude (Rapoport 
et al., 1976a)~ There is a fast variable, represented by phosphoenolpyruvate, an interme- 
diate one (ATP) and a very slow one (2,3-bisphosphoglycerate). Figure 24 gives a phase 
plane plot of the concentration of ATP versus the concentration of 2,3-bisphosphoglycer- 
ate obtained by numerical integration of the differential equations for different starting 
values of the metabolites. There is initially a fast movement toward the quasi-steady 
state line (dotted curve). This takes about 0.5-2 h. The quasi-steady state line is deter- 
mined by the condition that the time derivatives in Eqns. (5.1) and (5.3) are zero. Having 
approached the line the system moves slowly toward the stationary in vivo point. The 
slow movement is determined by the relaxation of 2,3-bisphosphoglycerate and takes 
more than 10 h. The first phase is characterized by an almost constant concentration 
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FIO. 24. Relaxation of ATP and 2,3-bisphosphoglycerate to the steady state. The continuous 
lines give the trajectories of the movements from several starting points. The steady state which 

is fmally approached is indicated. The broken line indicates the quasi-steady state. 
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FIG. 25. Experimental proof for the existence of a quasi-steady state at unrelaxed 2,3 bisphos- 
phoglycerate concentrations. Erythrocytes were preincubated for 2 h at pH 7.6 in the absence 
of glucose. Then glucose was added and the time-dependent changes of the metabolite concen- 
trations were measured. The points in the figure represent experimental values (Tomoda and 
Minakami, 1975), the curves were calculated (Rapoport et al., 1976a). Beyond 0.5 h a quasi-steady 
state period is observed for ATP and 3-phosphoglycerate, but 2,3-bisphosphoglycerate and conse- 

quently pyruvate change continuously. 

of  2 ,3-bisphosphoglycera te ,  in the  second  phase  the concen t ra t ion  of  2 ,3-b isphosphogly-  
cera te  changes  great ly  while A T P  and all o ther  metabo l i t e s  r ema in  near ly  cons tant .  
The  quas i - s teady  s tate  might  appea r  to  the  exper imente r  as a t rue s teady state since 
the changes of  2 ,3-b isphosphoglycera te  occur  only slowly. 

In  Fig. 25, exper imenta l  p roo f  for the existence of  a quas i - s teady  state is given. The  
po in ts  in the figure represent  exper imenta l  da t a  ( T o m o d a  and  M i n a k a m i ,  1975), the 
curves were calculated.  

F igure  26 shows the effect of kAavas~ on the ATP- leve l  in the quas i - s t eady  state. F o r  
compa r i son  the line of  the t rue s teady state is inc luded  in the figure, A T P  is more  
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FI~. 26. ATP-concentration and fluxes through the bypass in the quasi-steady state as functions 
of the rate constant of the ATPase (kArp,,). The continuous lines are those for the quasi-steady 
state at unrelaxed 2,3-bisphosphoglycerate concentrations, the broken line corresponds to the 
true steady state (el. Fig. 22). The curves were computed with [2,3 P2G] = 4.49 raM. At the 

in vivo-point l)P2OM = [?P2Gase and [ATP]s teadys ta te  = [ATP]quasi-st,~adystate. 
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constant in the quasi-steady state. This means that the glycolytic system can tolerate 
ATP-overconsumption for a short period of time better than for longer periods. The 
reason for this additional constancy of ATP is that an increased kArp~s,-value leads 
to a lowered rate of bisphosphoglycerate-mutase while the 2,3-bisphosphoglycerate phos- 
phatase is not affected initially. Therefore more 2,3-bisphosphoglycerate is degraded 
than formed during the quasi-steady state period and this additional flux yields ATP 
at the pyruvate kinase step. Thus 2,3-bisphosphoglycerate acts as an energy source 
for a certain period of time. The role of 2,3-bisphosphoglycerate as an energy source 
is employed for blood preservation where ATP is buffered at the expense of 2,3-bisphos- 
phoglycerate-degradation (Rapoport, 1947). Only the steady state with [ATP] = zero 
exists, presumably because the kAavas~-value is increased too strongly relative to the 
Vmax of the hexokinase-phosphofructokinase system. 

(d) The Role of  Conservation Quantities in vitro 

Conservation quantities for the adenine and pyridine nucleotides, phosphate groups 
and for the oxidation equivalents exist in vitro. The following equations may be written 
considering only the glycolytic pathway 

adenine nucleotides = [AMP] + [ADP] + [ATP] (5.11) 

pyridine nucleotides = [NAD ÷] + [NADH] (5.12) 

phosphate groups = [G6P] + [F6P] + [2 FP2]  + [TP] + 211, 3 P2G] + [3 PG] 
+ [2 PG] + [PPyr] + 2[2, 3 P2G] + [ADP] + 2[ATP] 
+ [Pi] (5.13) 

oxidation equivalents = [NAD +] + [1,3 P2G] + [3 PG] + [2PG] + [PPyr] 
+ [Pyruvate-] + [2,3 P2G]. (5.14) 

For the first two quantities the conservation restriction may also hold in vivo for 
certain periods of time since the processes changing these sums are very slow. For 
phosphate groups the approximation is valid only for a short time since inorganic 
phosphate is transported through the cell membrane with a half time of 1-2 h. For 
the oxidation equivalents no conservation equation is valid in vivo since pyruvate is 
exchanged rapidly with other tissues. The conservation equation for the oxidation equiv- 
alents in vitro has been often overlooked. The constancy of the sum of oxidized metabo- 
lites has recently been tested experimentally (Rapoport et al., 1976b). Generally, the 
expected inverse relation between 2,3-bisphosphoglycerate and pyruvate-changes has 
been found. In some conditions there exist quantitative discrepancies indicating that 
additional oxidation or reduction equivalents become available. Oxidation equivalents 
may be introduced into the system at the glyceraldehydephosphate dehydrogenase step 
via the methemoglobin reductase (Travis et al., 1974). The source of the reduction equiv- 
alents is unknown. 

Figure 27 shows the theoretical curves for the accumulation of 2,3-bisphosphoglycerate 
at different amounts of oxidation equivalents. The conservation sum limits the changes 
of 2,3-bisphosphoglycerate and influences the transition time of the system. The final 
state of the system in vitro is characterized by quasi-stationary concentrations of all 
metabolites except for the accumulation of lactate, fructose 1,6-bisphosphate and triose 
phosphate. The increase of the phosphate esters is due to the constancy of pyruvate 
and consequent continuous rise of NADH. The smaller the conservation quantity the 
greater the effects in the system. Table 7 lists the calculated quasi-stationary concen- 
trations of the metabolites in vitro. The production of fructose 1,6-bisphosphate and 
triose phosphate consumes ATP and results in a decreased ATP-concentration. An acti- 
vation of the hexokinase-phosphofructokinase system may therefore result in a lowered 
ATP-level despite a higher glucose consumption rate. The quasi-steady state in vitro 
is due to the increase of [NADH] and the resulting decrease of [NAD+]. Since 
[NAD +] >> [NADH] such changes have little effect on the metabolite concentrations. 
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FIG. 27. Relaxation of 2,3-bisphosphoglycerate after a twofold activation of the hexokinase-phos- 
phofructokinase system at different concentrations of the oxidation equivalents. A[2,3 P2G] 
is defined as [2,3 P2G] (t) - [2,3 P2G] (t = 0). The starting values for 2,3-bisphosphoglycerate 
depend on the conservation sum 7". The transition times were calculated by use of expression 
(4.26) at different levels of the oxidation equivalents. For  T = 10, 7 and 5 mM the values were 
1.29, 0.66 and 0.21 h respectively. No relaxation could be observed for the lowest conservation 

sum T = 3 mM, since 2,3-bisphosphoglycerate changes by less than 2%. 

The analysis shows that the energy metabolism is the "core" of glycolysis. Thus, 
the status of the adenine nucleotides determines the redox state of the pyridine nucleo- 
tides and not conversely. This conclusion is in agreement with that drawn by Stubbs 
et al. (1972) in an intuitive manner. 

The conservation of the phosphate groups has been investigated by Glende et  al. 
(1975) for a simplified glycolytic system. Their model and the differential equations 
used are shown in Fig. 28 and the corresponding legend. In Fig. 29 the steady state 
curve of ATP versus the rate constant for the ATPases is given (compare with Fig. 
22). The limitation by phosphate groups leads to a decreased ATP-level. In contrast 
to the unconstrained system activation of the ATPase at low kATease-value results in 
an increased ATP-level with higher glycolytic flux. It follows that in erythrocytes phos- 
phate limitation may result in lowered ATP and 2,3-bisphosphoglycerate levels. 

A change in the conservation sum for the adenine nucleotides is considered in Figs. 
30 and 31. The net response of the hexokinase-phosphofructokinase system (Fig. 30) 
was constructed as in Fig. 21. An increase of the conservation sum does not change 

TABLE 7. DEPENDENCE OF THE QUASI-STEADY STATE CONCENTRATIONS in vitro ON THE CONSERVATION SUM FOR 
THE OXIDIZED METABOLITES (FROM RAPOPORT et al., 1976a) 

Conservation sum T 
T = oo T = 5000 T = 4500 

Metabolite control activated control activated control activated 

ATP 1186 1354 1162 1133 1149 1103 
2,3 bisphosphoglycerate 4900 29470 4438 4872 4183 4390 
phosphoenolpyruvate 263 215.6 23.8 32.2 22.4 29.1 
pyruvate oo oo 482 19.6 254 15.4 
A flux 0 0 33.2 1436 57.2 1557 

The hexokinase--phosphofructokinase system was activated by a factor of two. A flux is the difference 
between the rates of glucose consumption and lactate formation given in triose units (taM h -  1). The concen- 
trations are given in taM. 
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FIG. 28. Schematic representation of the phosphate metabolism in glycolysis. In the reaction 1 
there are consumed 71 molecules ATP. S stands for glucose and is considered to be constant. 
In the reaction 3?3 molecules ATP are produced. 1 stands for an energy rich intermediate 
(e.g. the triose phosphates). There is also a side-path (reaction 5) which can be either a 
leakage of energy rich compounds (e.g. 2.3 P2G-bypass) or a biosynthetic pathway. In the 
reaction 9 ATP is hydrolyzed to ADP and Pv The following equations are used for the 
description of the system: 

d [ l ]  
dt = k , [ATP] - ks[I  ] - k3[l ] [ADP] [P,] 

d[ATPI 
- -  -- - k~ 7~ [ATP] + k a 7a [I ] [ADP] [P,] - k9 [ATP] 

dt 

[Po] = [ATP] + ?l [ I ]  + [Pi] 

ZA = [ATP] + [ADP] .  

significantly the maximal flux through the glycolytic chain. This is due to the fact that 
simultaneous increases of ATP and AMP compensate each other in their effects on 
the phosphofructokinase. Based on the curves in Fig. 30 the glycolytic model responded 
as shown in Fig. 31 to a change in the sum of adenine nucleotides. The ATP-concen- 
tration increased to approximately the same extent as the total sum so that the relations 
between the adenine nucleotides remained fairly constant. The glycolytic flux was only 
changed by 15% and the flux through the bypass was practically unchanged. These 
results are in agreement with experimental data (Syllm-Rapoport et al., 1962, 1969) 
although the model still neglected important factors such as variations in the interactions 
of ATP, 2,3-bisphosphoglycerate, Mg 2+ and hemoglobin. The model shows that the 
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FIG. 29. Dependence of the ATP-concentration in the steady state on the rate constant of the 
ATPase under phosphate limitation (from Glende et al. (1975)). The curves were calculated 
on the basis of the reaction scheme given in Fig. 28. The ATP-concentration has been normalized 
to 5~A, the kATPas, = k9 to kt (rate constant of the "sparking" reaction). The parameters used 
were: ?a = 2, 71 = 1, Z phosphate/'ZA = 5.0 (Z phosphate is the conservation sum P0 for phos- 
phate groups). The ratio kdk3  stands for the efficiency of the side-path. Two "advantageous" 
features of the model are apparent: 1, the ATP level rises if the load is increased ("compensation" 

effect); 2, if the side pathway is activated the ATP concentration increases. 
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FIG. 30. ATP-response of the hexokinase-phosphofructokinasc system at different total concen- 
trations of the adenine nucleotides. The curves were constructed as described in the legend 

to Fig. 21 for different values of T.A. 

particular dependence of the velocity of the phosphofructokinase on the concentrations 
of ATP and AMP serves to keep constant the erythrocyte metabolism even in the 
case of great variations in the individual concentrations. 

The conservation sum for the pyridine nucleotides has only a negligible influence 
on the system (Rapoport et al., 1976a). Even a severalfold increase of the pyridine 
nucleotide pool should have no influence on either quasi-steady state levels in vitro 
or on the relaxation time of the system. The conservation sum of pyridine nucleotides 
should also have no influence in vivo. 

(e) Regulatory Enzymes of the Glycolysis of Erythrocytes 

The regulatory importance of the enzymes has been evaluated for steady states, quasi- 
steady states and time-dependent processes. 

The control strengths are given in Table 8 of the glycolytic non-equilibrium enzymes 
in the steady state and in the quasi-steady state at unrelaxed concentrations of 2,3-bis- 
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FIG. 31. Concentrat ion of ATP and fluxes in steady states at different total adenine nucleotides. 
The cont inuous lines were calculated for EA = 1.4 m ~  the broken ones for EA = 2.1 mM (per 
litre cells). The net curves of  the hexokinase-phosphofructokinase system (Fig. 30) were 
employed. The curve at 1.4 mM does not  entirely coincide with that given in Fig. 26 since 
the net  curves of Fig. 30 were fitted with different parameter  values to simulate the dependence 

on EA. 
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TABLE 8. CONTROL STRENGTHS OF T ~  GLYCOLYTIC NON-EQUILI- 
BRIUM ENZYMES IN THE STEADY STATE AND IN THE QUASI-STEADY 
STATE AT U N R E L A X E D  CONCENTRATIONS OF 

2, 3 -BISPHOSPHOGLYCERATE 

Steady Quasi-steady 
Enzyme state state 

hexokinase-phosphofructokinase 
system 0.24 0.78 

ATPase 0.55 0.25 
pyruvate kinase -0.02 -0.16 
bisphosphoglycerate mutase 0.02 0.17 
2,3-bisphosphoglycerate 

phosphatase 0.21 - 0.04 

phosphoglycerate. For steady state conditions the flux control is exerted by the hexo- 
kinase-phosphofructokinase-system, the ATP-consuming processes and by the 2,3-bis- 
phosphoglycerate phosphatase. The other non-equilibrium enzymes and, of course, the 
equilibrium enzymes, do not influence the glycolytic flux. In the quasi-steady state the 
hexokinase-phosphofructokinase system has the most pronounced influence on the flux. 
This is the expected behaviour for a linear enzymatic chain if no strong feedback signals 
to the first enzymes exist (see Section IV.2,(d)). The nonequilibrium enzymes affect the 
metabolite concentrations differently. For instance, the pyruvate kinase which is rather 
unimportant for the flux control has an influence on the concentration of phosphoenol- 
pyruvate in the steady state and in the quasi-steady state (Rapoport et al., 1976a). 
The ATP-level is almost uninfluenced by all enzymes in the quasi-steady state at unre- 
laxed concentrations of 2,3-bisphosphoglycerate (cf. Fig. 26). Whereas the importance 
of the hexokinase-phosphofructokinase-system has been accepted by all experimenters 
additional flux controls have been falsely ascribed to the glyceraldehydephosphate de- 
hydrogenase, phosphoglycerate kinase and pyruvate kinase (e.g. Reinauer and Bruns, 
1964; Minakami, 1968). The time dependent processes are largely determined by the 
very slow relaxation of 2,3-bisphosphoglycerate as  a result of the time limitation by 
the 2,3-bisphosphoglycerate phosphatase and bisphosphoglycerate mutase. The initial 
process toward the quasi-steady state is influenced more or less by all non-equilibrium 
enzymes of the system. The actual contribution of the various enzymes to the control 
of the transition time is, of course, dependent on the kind of perturbation of the system. 

2. Ex tens ions  to Other  Cells 

Owing to the simplicity of the erythrocyte metabolism, most extensions to other types 
of cells involve the inclusion of additional, complicating features. These include the 
interaction with other pathways. In most cells respiration interacts with glycolysis. One 
result is the absence of a conservation quantity for oxidized glycolytic metabolites. Oxi- 
dation of NADH via the respiratory chain introduces oxidation equivalents into the 
glycolytic chain. The occurrence  of respiration is linked to the presence of mitochondria 
which constitute a separate compartment. Of the various substances compartmentalized 
the most important ones are the adenine nucleotides. They contain much higher concen- 
trations of ATP and ADP and in a ratio which differs from that in the cytosol. For 
some cells, e.g. for reticulocytes, the suppression of glycolysis by respiration (Pasteur 
effect) is partly due to the low cytosolic concentrations of the adenine nucleotides (Jaco- 
basch et al., 1975). The presence of a sizable oxidative pentose pathway requires its 
consideration in the model. This applies even to erythrocytes at low pH-values (Loecker, 
1964). The occurrence  of gluconeogenesis brings with it the consideration of its enzymes. 
Of necessity additional controlling steps will have to be introduced. There is good 
evidence that some futile cycling occurs in the liver (Katz and Rognstad, 1976) and 
to a large extent in the flying muscle of the bumble bee (Clark et al., 1973; Bloxham 
et al., 1973). Of course, if the first substrate is not glucose (e.g. galactose, pentoses, 
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glycogen) corresponding modifications of the model have to be introduced. In the pres- 
ence of additional pathways other feedback signals may assume importance, e.g. the 
influence of alanine on the pyruvate kinase (Sparmann et al., 1973). Obviously, only 
the kinetic constants of such enzymes which are germane to the cell type considered 
should be employed. For instance, the properties of the phosphofructokinase of erythro- 
cyte and of muscle differ somewhat and there are large distinctions of both of them 
as compared with the phosphofructokinase of yeast. 

A much disputed question is the functional importance of membrane binding of 
enzymes. The first precondition for such an effect to be of significance is that the enzyme 
exerts an influence on flux or metabolites. For the hexokinase of rabbit reticulocytes 
it appears likely that the binding may play a role in the Pasteur effect (Gellerich and 
Augustin, 1975). In other tissues, e.g. brain, binding occurs (Knull et al., 1974) but 
its functional significance is uncertain. The observed binding of large amounts of glycer- 
aldehydephosphate dehydrogenase (Schrier, 1963) and of minor amounts of other equi- 
librium enzymes on erythrocyte membranes lacks on two counts biological relevance 
(Maretzki et al., 1974). First, because the enzymes do not exert control on glycolysis 
and secondly, because of the artefactual nature of the binding; it occurs only in hypo- 
tonic conditions. 

The simple model for erythrocytes (Rapoport et al., 1974) has been applied to two 
systems. In anaerobic ascites tumor cells (Schulz et al., 1976) only the following modifica- 
tions were necessary. First, the presence of an active ~-glycerophosphate-dehydrogenase 
had to be taken into account, secondly, the 2,3-bisphosphoglycerate-bypass could be 
dispensed with and thirdly, a unidirectionality and inhibition by NADH was assumed 
for the glyceraldehydephosphate dehydrogenase. The formation of ct-glycerophosphate 
leads to a modified conservation equation 

[NAD +] + [1.3P2G] + [3PG] + [2PG] + [PPyr] + I-pyr] - [~GP] = const. (5.15) 

It follows from it that the accumulation of ~-glycerophosphate is accompanied by 
a stoichiometric formation of pyruvate in the steady state of the other metabolites 
of glycolysis. These predictions correspond to the experimental data. 

The fetal rat liver which has been studied by Berger, R, and Hommes, F. A. (personal 
communication) is characterized by the absence of gluconeogenesis and glucose con- 
sumption, and a negligible respiration. In the metabolic sequence phosphorylase is the 
first enzyme. It is inhibited by uridindiphosphate-glucose. Under the assumption that 
this compound is in equilibrium with glucose 1-phosphate and glucose 6-phosphate 
the model becomes virtually identical with that of the glycolysis of the erythrocyte. 
Thus it has been shown that phosphorylase and, to a lesser extent, phosphofructokinase 
determine the steady state flux. 

3. Other Models of  Glycolysis 

(a) Detailed Models 

These models are characterized by the endeavour to include in a detailed manner 
all reactions with as many of their parameters as possible. 

The pioneering work has been done by Chance et al. (1960) and Garfinkel and Hess 
(1964) on the aerobic glycolysis in ascites tumor cells. The latter model included eighty- 
nine reactions among sixty-five chemicals (enzymes, substrates, complexes etc.) and de- 
scribed the observed initial and final states quantitatively and the transitory behaviour 
of the system semi-quantitatively. Oxidative phosphorylation and compartmentation of 
ATP and NAD + were included in the model. Several ad hoc assumptions were necessary 
to obtain a satisfactory fit to the data. One served to circumvent the observed discre- 
pancy in the aldolase-triose-phosphate-isomerase region where the mass action ratio 
was not in accord with the direction of the glycolytic flux. An interaction between 
the enzymes influenced by dihydroxyacetone phosphate was postulated but could not 
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be supported by later experiments (Hess, B., personal communication; Melnick and 
Holtin, 1973). Essential biological conclusions of the early work were: 1. There is general 
agreement of the kinetics of enzymes in vitro and in vivo despite some discrepancies. 
Thus, the working of a living cell may be simulated on the basis of known physico- 
chemical laws. 2. The adenine nucleotides are the most important factor for control 
of the glycolysis. 3. There is no single control site as in some biosynthetic pathways. 
Instead, the multitude of interactions in vitro between enzymes and effectors seemed 
to be important. 4. The equilibrium relation at the lactate dehydrogenase and glyceralde- 
hyde-phosphate dehydrogenase postulated by Hohorst et al. (1959) could not be verified 
in the simulations. Instead, neither enzyme seemed to be at equilibrium and the glyceral- 
dehyde phosphate dehydrogenase had a pronounced influence on the NAD+/NADH - 
ratio. 5. The ~-glycerophosphate dehydrogenase seemed to be of little importance in 
aerobic ascites tumor cells. 

Later on Garfinkel et al. (1968) modified the model to describe the glycolysis of 
a beef heart supernatant. Again, simplifying assumptions on the enzyme mechanisms 
and many alterations of the in vitro data were necessary. The glycolytic flux became 
inhibited after a short time of incubation which seemed to be the result of a "coherent" 
regulation of the pathway as a whole, rather than of an inhibition of a single step. 
A discrepant behaviour of the triosephosphate isomerase-aldolase region was again 
noted and seems to be of general occurrence. The abnormality could be due to the 
hydration of glyceraldehyde 3-phosphate, to the anomerization of fructose 1,6-bisphos- 
phate (Hess, B., personal communication) or to the binding of glyceraldehyde 3-phos- 
phate to the enzymes which are present in high concentrations. 

Vergonet (1971) employed a similar approach to the liver of fetal and adult rats. 
The model was designed to answer the question why fetal liver tolerates anaerobiosis 
better than adult liver. It could be shown that the glycolytic flux is mainly controlled 
by the hexokinase while the phosphofructokinase exerts only a fine control. The flux 
was roughly proportional to the concentration of ATP. While the energy production 
in fetal liver relied solely on glycolysis, in adults the transition to anaerobiosis leads 
to glycogen degradation which partly compensates for the decrease in energy production 
(Hommes et al., 1973). 

Detailed models of glycolysis have been built up also for the simulation of the oscilla- 
tory behaviour of the intermediates (Achs and Garfinkel, 1968; Richter et al., 1975; 
see Section V.4). 

(b) Stoichiometric Models  

Selkov (1975a) proposed a skeleton model of glycolysis which takes into account 
only the stoichiometric structure of the pathway. The model is depicted in Scheme 
14. The metabolite $1 stands for glucose, $2 for energy rich metabolites of the middle 
section of the glycolytic chain, A2 and A3 represent the adenine nucleotides ADP and 
ATP. The system consists of the following reaction steps: 1. The ATP-consuming pro- 
cesses of the upper part of glycolysis (hexokinase, phosphofructokinase, vl); 2. the ATP- 
producing reactions of the lower part of glycolysis (phosphoglycerate kinase, pyruvate 
kinase, v2); 3. non-glycolytic ATP-consuming processes, ATPases, v3); 4. irreversible 
utilization of energy rich intermediates for synthesis ("leakage", v4). The concentration 
of the first metabolite S1 is assumed to be constant. The pathway is characterized 

A 3 A 2 A v~va ~3 

Scheme 14. 
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by reflexive catalysis (Calvin, 1969), i.e. a special type of autocatalysis where the product 
ATP is partly used to activate the initial substrate St in a "sparking reaction". 71 
and 72 are stoichiometric coefficients which indicate how many molecules of ATP are 
consumed in reaction vl and are produced in reaction v2, respectively. It is assumed 
that the velocities of the enzymes depend linearly on the metabolite concentrations. 

For the steady state concentrations of ATP the following equation is obtained 

( k k ~ )  k4 
71 + k2 A 

Aa _ 1 " (5.16) 
A k3 

(72 --71)  - - -  
kl $1 

A denotes the total concentration of adenine nucleotides and the k's are the rate 
constants. There exists a further steady state for which the concentrations of $2 and 
Aa are equal to zero. In Fig. 32 the steady state concentrations of ATP are plotted 
versus the normalized kinetic constant of the ATPase-reaction ~¢~3 = k3/ktS1 for various 
values of the normalized kinetic parameter of the leakage reaction of(4 = k~/klS1. The 
figure shows that this simple stoichiometric model possesses various properties found 
in the comprehensive model of glycolysis (see Section V.1). For small values of the 
leakage parameter ~ ,  the steady state concentration of ATP is stabilized against vari- 
ations of the ATP-consumption. 

There exists a critical value ~ of the rate constant of the ATPase. *For Mgher 
values of ~v~¢3(~ 3 > ~vt~) there exists only the steady state A 3 = S 2 = 0. Based on this 
model, Reich et al. (1976) analyzed various other reaction mechanisms which lead to 
ATP-production. They were particularly concerned with the question whether the 
models of various complexity show self-stabilization of the ATP-concentration. The 
models are depicted in Schemes 15a-c. 

Scheme 15a represents a system where ATP is produced directly from another high 
energy compound $1. The analysis of this model reveals that the ATP-concentration 
decreases strongly if the energy consumption is increased, i.e. no self-stabilization of 
the ATP-concentration is observed. In the reaction system represented in Scheme 15b, 
ATP is indirectly regenerated from a high energy intermediate $2 which may also be 
degraded in a leakage reaction v4. In this system the ATP-concentration remains rela- 
tively constant with variations of the energy consumption. This may be easily explained 

{0 , i I ; ~ ~ ' ' ' 

I I I I ~ 1 ,  I I I I |  I 

FIG. 32. ATP-concentration (A3) as function of the normalized kinetic constants ,ga = k3/k~Si 
(ATPase) and ,g~4 = k,/klS~ (leakage) for the stoichiometric model of glycolysis depicted in 
Scheme 14. A denotes the total sum of the adenine nucleotides. ~ is the critical value of 

the kinetic constant of the ATPase. Parameter values: ~ 2  = k2A/klSl = 5, Yl = 1, "~2 = 2. 
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A 3 A 2 Iv4 

Nt ~ 

(c) A ' ~ A 2  

{b) 

Scheme 15. 

by the fact that ADP which is produced by the ATPases drives the intermediate $2 
into the reaction v2 in which ATP is produced, while the energy waste via the reaction 
v4 is decreased. Scheme 15c represents a system with reflexive catalysis where ATP 
is indirectly regenerated via a reducing agent N2. In Scheme 15c, N1 stands for NAD ÷ 
and N2 for NADH. Reaction os may be considered as a simplified representation of 
oxidative phosphorylation. This model yields a similar dependence of the ATP-concen- 
tration from the kinetic parameter of the ATPase reaction, i.e. self-stabilization of the 
ATP-concentration provided that the reaction 04 is very fast. 

Reich et al. (1976) pointed out the teleonomic behaviour of the model depicted in 
Scheme 14 in as much as at low ATP concentrations energy regeneration has precedence 
over the synthetic processes. 

4. Models  to Describe Oscillations in Glycolysis 

Since periodic changes of glycolytic metabolites were first described in anaerobic yeast 
cells, numerous experimental and theoretical studies were carried out on oscillations 
in metabolic systems (for review of the experimental work see e.g. Hess et al., 1969; 
Hess and Boiteux, 1971). In various types of cells and cell extracts the time dependence 
of metabolites was measured under differing conditions such as various pH-values and 
temperatures. Also the effects of various effectors of the enzymes of glycolysis on the 
occurrence and form of the oscillations were studied (e.g. Frenkel, 1968a). 

Figure 33 shows a selection of periodic changes of metabolites in a cell free beef 
heart extract (Frenkel, 1968b). A characteristic feature of these oscillations is the recipro- 
cal behaviour of the changes of fructose 6-phosphate and fructose 1,6-bisphosphate. 
This observation which was confirmed in many other studies led to the supposition 
that the phosphofructokinase plays a controlling role for the oscillatory behaviour. Two 
types of experimental results support this conclusion: Firstly, the observation that effec- 
tors of the phosphofructokinase influence the oscillations. They are suppressed, for in- 
stance, by the inhibitor citrate and stimulated by the activator inorganic phosphate 
(Frenkel, 1968a). Secondly, oscillations only occur by infusing of substrates which are 
metabolized via the phosphofructokinase. Accordingly, the vast majority of mathematical 
models of glycolytic oscillations are based on the assumption that the phosphofructo- 
kinase is the oscillator. The phosphofructokinase of most cells exhibits cooperative be- 
haviour and is influenced by a multitude of allosteric effectors. Among them are the 
activators AMP, ADP, Pi and fructose 1,6-bisphosphate and the inhibitors ATP, citrate 
and 2,3-bisphosphoglycerate. 
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FIG. 33. Periodic changes of the concentrations of AMP, ADP, ATP and of the glycolytic 
intermediates F6P and FP2 in cell free extracts of beef heart. The points are experimental 
data (Frenkel, 1968b) and the curves represent theoretical values obtained by Achs and Garfinkel 

(1968) by simulation studies. 

(a) Models Based on Activation or Inhibition of Control Enzymes 

Higgins (1964) developed the first model which yielded a mechanistic interpretation 
of the oscillations in glycolysis. His model is based on a scheme of reactions which 
includes only the first enzymes of glycolysis (Scheme 16). It is assumed that there is 
a constant input into fructose 6-phosphate from glucose catalyzed by hexokinase and 
phosphoglycerate isomerase and that fructose 1,6-bisphosphate is removed by an irre- 
versible reaction. This scheme includes an activating effect of fructose 1,6-bisphosphate 
on the phosphofructokinase. The model is a special variant of the back activation oscil- 
lator which has been considered in Section III.4.(a).(i). For certain combinations of 
parameters the system exhibits limit cycles around an unstable steady state. From the 
location of the limit cycle on the phase plane (Fig. 6), one can see that the model 
describes correctly the experimentally observed phase shift between fructose 6-phosphate 
and fructose 1,6-bisphosphate (see Fig. 33). A weakness of the model is the assumption 
of the constancy of the adenine nucleotides, which undergo significant changes in the 
experimental system (see Fig. 33). 

Higgins: F6P • ~-FP2 

Glue , PFK~e,. ~32 
Selkov: ATP ADP 

Scheme 16. 

Selkov developed several models for the description of glycolytic oscillations which 
presuppose the phosphofructokinase reaction as source of the oscillations. His first 
model (Selkov, 1968) resembles that of Higgins (1964) in assuming a linear chain of 
three irreversible reactions, in which the second one is activated by its product. In 
the reaction Scheme 16, $1 stands for ATP and $2 for ADP. In contrast to Higgins 
(1964), Selkov (1968) disregarded the activating effect fructose 1,6-bis-phosphate with 
the argument that under physiologic conditions the phosphofructokinase is saturated 
with this activator. Instead he takes into account the activating effect of ADP. The 
concentration of fructose 6-phosphate is assumed to be constant, which again does 
not correspond to the experimental data. 



Metabolic regulation and mathematical models 

A =~'~ADP 
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Scheme 17. 
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The basic model of Higgins-Selkov was supplemented further by Selkov (1972). 
Scheme 17 shows a model which takes into account additionally the phosphorylation 
of ADP to ATP and a nonglycolytic ATPase reaction. Oscillations are only observed 
if the influence of effectors on the phosphofructokinase, such as the activation by ADP 
or the inhibition by ATP are included. 

Goldbeter and Lefever (1972) studied a model with similar essential features as the 
model of Selkov (1968). They introduced the special assumption that the cooperative 
properties of the phosphofructokinase are described by the model of Monod et al. 
(1965). By inclusion of diffusion processes spatially inhomogeneous structures could be 
generated. 

In a later study it was shown (Boiteux et al., 1975) that the entrainment of glycolytic 
oscillations by a periodic source of substrate is in excellent agreement with experimental 
results. 

Dynnik and Selkov (1973) considered a model of the lower part of glycolysis. They 
showed that glycolytic oscillations may also arise theoretically by the activation of pyru- 
vate kinase by fructose 1,6-bisphosphate or by the inhibition of the glycerinaldehyde- 
phosphate dehydrogenase by glyceraldehyde 3-phosphate. Both assumptions meet with 
difficulties. Under physiological conditions pyruvate kinase is saturated with fructose 
bisphosphate and a forward inhibition of the glycerinaldehydephosphate dehydrogenase 
by glyceraldehyde 3-phosphate has not been observed. They speculated on the possibility 
that the observed double periodicities in the oscillations of metabolites (Pye and Chance, 
1966) may arise by interaction of an oscillator of the lower part of glycolysis with 
the phosphofructokinase-oscillator. 

(b) Oscillations in a Stoichiometric Model  

In this subsection there is considered in detail a model which is based on the glycolytic 
model proposed by Selkov (1975a, b). It demonstrates that oscillations arise in a System 
in which only stoichiometric interactions occur. In addition to the system shown in 
Scheme 14 the model represented in Scheme 18 takes into account (1) the irreversible 
input of glucose (Vo); (2) an alternative pathway of energy production ("respiration"), 
(v4); (3) the adenylate kinase reaction (v+6, v-6); (4) an irreversible outflow of $1(v7). 
The system is described by the following differential equations 

dSa 
dt = Vo - vl - v7 (5.17a) 

dS2 
dt - 2vx - v2 - v5 (5.17b) 

rv7 IV5 

A, A 2 

Scheme 18. 
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dA3 
d t  v l  At-/32 - /33 '~  I)4 - I )+6  - [ / 3 - 6  (5.17c) 

dA1 
dt v+6 + v-6.  (5.17d) 

In addition there is the conservation equation for the adenine nucleotides 

A1 + A2 + A3 --- A (5.18) 

For  the metabolite dependent fluxes /31 rate equations are used which are listed in 
Table 9. For  the reactions 1 and 3, hyperbolic saturation functions are assumed with 

TABLE 9. RATE LAWS ASSUMED FOR THE VARIOUS 
REACTION STEPS OF THE STOICHIOMETRIC MODEL OF 

GLYCOLYSIS (REACTION SCHEME 18) 

Reaction Rate equation 

0 v0 = const 
klA3S1 

1 v 1 = 
1 + A a / K 1  

2 v2 = k2A2S2 
k3A3 

3 v 3 
1 + A 3 / K  3 

4 v4 ~ k4A2 

5 V 5 = ksS  2 

6 v6 = k+6 A~ - k _ 6 A I A  3 
7 v~ = k7S1 

respect to the substrate A 3. For all other enzymes linear dependence on substrate con- 
centration is assumed. It is presupposed that the reactions v2, /3+6 and v-6 are very 
rapid in comparison with the others. In this case the steady state approximation may 
be applied to the metabolites $2 and A 1 . From 

2vl - v 2  - v 5  = 0 (5.19) 

one obtains with the kinetic equations from Table 9 

2 k l S 1 A a  (5.20) 
S 2 = // A 3 "~ 

1 + g~)(kzA2 + ks) 

The steady state approximation for A l, 

136 - -  / 3 - 6  = 0 ,  (5.21) 

leads to the equilibrium condition for the adenylate kinase, which has been given in 
Eqn. (5.9). Because of the validity of the conservation equation for the adenine 
nucleotides (Eqn. (5.18)) both A1 and A2 may be expressed as unique functions of A 3 
(see Eqns. (5.10a, b)). Under such assumptions the system of differential equations reduces 
itself to two equations 

dS1 k l S 1 A 3  
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and 

2 dA2(A3)~ dAa _ klStAa(k2A2(A3)- ks) 

kaA3 
- -  + kgA2(A3) = f2($1, A3). (5.22b) 

A3 
I + - -  

Ka 

The dynamic properties of the system may be investigated in the phase plane. One 
obtains for the quasi-steady state lines from Eqns. (5.22a,b) 

S/ _ Uo klA3 (5.23a) 
k7 q- 

Aa 
1 + K--- ~ 

k3A3 k4A2 (k2A2 + ks) 1 + 
A3 

1 +  
Si t = K1 

(k2A2 - k~)klA3 (5.23b) 

Figure 34a,b shows the quasi-steady state lines for different values of the kinetic par- 
ameters. Whereas the line S~I(A3) shows a simple monotonic course, the line S~(Aa) 
is rather complicated. It consists of two branches (al, a2 and bl, b2, Fig. 34b). Along 
al and bl both the numerator and denominator in Eqn. (5.23b) are negative and along 
a2 and b2, positive. Since along the branches a 2 and b2 energy consumption is greater 
than energy production by respiration (v a > v4), these branches describe possible real 
conditions with glycolysis as an energy producing system. The condition characterized 
by the branches al and bl corresponds to an excess of energy production by respiration 
over degradation by ATPases (v3 < v4), and glycolysis would have to be an energy 
consuming process. The ATP-balance is achieved in this case by a predominant flux 
of glycolysis through the sidepath (v5 > v2). In the reaction v2 consequently less ATP 
is produced than is used in the reaction v~. 

The steady state of the system lies on the intersection of the lines S~ and S~. Because 
of the complicated course of line S~ ~ there may exist several steady states simultaneously. 
It is of particular interest that the system may exhibit relaxation oscillations if A3 
is a rapid variable and if the system possesses unstable steady states (see Section 
III.5.(c).(i)). 

For the stability analysis one utilizes the methods described in Sections III.2 and 
III.4. The easiest way to find the bifurcation points in the present case is to vary the 
parameters v0 and k7, since they influence only the position of the quasi-steady state 
line St but not that of S] ~. In Fig. 35 is shown the (k7, Vo)-plane which is divided by 
the bifurcation lines tr(v0, kT) = 0 and A(v0, kT) = 0 into three domains. In the domain 
A the system possesses only a single stable steady state. With the passage into domain 
B, two additional steady states arise, one a stable steady state, the other an unstable 
saddle-point. When crossing from the domain A to C, an unstable state is produced 
surrounded by a limit cycle (Hopf bifurcation). 

In Fig. 36 are shown for parameter values which had been taken from the domain 
C two different trajectories, which merge with the limit cycle from inside or outside. 

The stoichiometric model is of importance for the theory of metabolic regulation, 
since it shows that periodic changes of metabolites may occur in models which do 
not include activation or inhibition of enzymes by metabolites. To achieve periodicity 
non-glycolytic ATP-producing and -consuming reactions have to be included. A detailed 
analysis shows that the model system exhibits relaxation oscillations only if (1) the 
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velocity of the enzyme E1 depends on the concentration of $1 and (2) if the variable 
A3 is fast in comparison to $1. Generally, in real systems both requirements are not 
fulfilled simultaneously. In cells with high glucose concentration (e.g. erythrocytes) ATP 
is a faster variable than glucose but the hexokinase is saturated by glucose, i.e. the 
first requirement is not fulfilled. In other cells with low concentrations of glucose (e.g. 
muscle) the velocity of the hexokinase depends on the glucose concentration but ATP 
is the slow variable. It seems, therefore, that the explanation of oscillations in real 
systems requires the inclusion of non-stoichiometric couplings, such as the activation 
of phosphofructokinase by AMP or ADP. 

All models considered so far for biological oscillations may be considered as skeleton- 
models, which try to account for various essential features of glycolysis. Their advantages 
are the small number of differential equations required and the possibility to prove 
the existence of limit cycles in a rigorous manner. The large number of models proposed 
indicates that they are not unique and that there is an element of arbitrariness in 
their construction. 

An opposite approach was chosen by Achs and Garfinkel (1968). For the simulation 
of the experimental data of Frenkel (1968b) they utilized a system of fifty-seven differen- 
tial equations and included in a detailed manner the cooperative properties of the phos- 
phofructokinase. A satisfactory simulation could only be achieved if a complicated time 
dependency of the kinetic parameters of the ATPases was assumed which was imposed 
from outside on the system, or an activation of the ATPases by 1,3-bisphosphoglycerate, 
for which there is no biochemical evidence. According to the great number of kinetic 
parameters of the enzymes and corresponding to their strategy of fitting the solutions 
to the experimental data, the results were not unique. Because of the high dimensions 
of the model it could not be shown whether the oscillatory solutions represent stable 
limit cycle or transitory periodicities. 

Richter et al. (1975) also used a detailed model to investigate the influence of perturba- 
tions of the NADH/NAD ÷-system on the oscillatory behaviour of the glycolytic interme- 
diates. For all enzymes, including the very fast ones, kinetic equations were used. The 
oscillations were generated by the activating effect of fructose 6-phosphate and the inhi- 
biting effect of ATP on the phosphofructokinase. The model could simulate the suppres- 
sion of oscillations by a sudden decrease of the NADH-level which was induced by 
addition of acetaldehyde (Pye, 1973). 

(c) The Significance of Oscillations in Metabolism 

The observation and theoretical investigation of oscillations in metabolism has had 
an extraordinarily stimulating effect on various fields of biology. The biochemical experi- 
menters have presented a number of examples which show under special conditions 
self-sustained oscillations ranging the whole gamut from simple enzymes systems, cell 
and tissue extracts to intact cells. Oscillatory phenomena have been known of course 
for a long time in various complex biological systems as well as in simple chemical 
ones. Their analysis, however, had not yielded a deeper understanding of the molecular 
basis of biological periodicities. This has been provided by the biochemical studies. 

Theorists have furnished a wide choice of reaction schemes for which the existence 
of limit cycles could be proved. At present there is no longer any lack of theoretical 
skeleton models. In principle the occurrence of limit cycles is no longer surprising since 
metabolic networks are represented by non-linear differential equations. The problem 
now is rather, which of the variety of models are applicable to a given biological system 
and under which biologically realistic conditions. Two biological questions may be 
asked: 

(1) Are metabolic networks designed in such a way as to suppress limit cycles or rather 
to generate them? Or is there a middle ground, i.e. that limit cycles represent a 
special adaptation? 
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(2) Have oscillatory mechanisms developed in such a manner as proposed by Selkov 
(1975a) that the stoichiometric regulation constituted a more primitive and more 
ancient stage than allosteric regulation? 

With respect to the first question, it has been noted before that biological systems 
and metabolism in particular are characterized both by features of great stability and 
of variability which sometimes assumes the character of periodicity. The principles of 
homeostasis which have developed during evolution tend to stabilize and smooth all 
parameters of living systems, be they nutrients, pH and other ions or temperature. 
Therefore, the main direction of evolution of design appears to be towards the stabiliza- 
tion of metabolic networks. On the other hand, there is no denying the fact that periodi- 
cities pervade all of living nature, and become prominent in particularly developed 
speci~ized systems, such as nerve cells. Obviously we are faced with a dialectic unity 
of two contradictory aspects of the organization of living systems. Thus one may give 
a general affirmative answer to the question posed. Apparently metabolic systems may 
be designed to exhibit both features of stability and of periodic behaviour. Whether 
oscillation have a definite importance on the level of intermediary metabolism itself 
may well be questioned. Their usually submerged oscillatory faculties rather may serve 
as elements to be used in more complex functions of biological systems, such as cell 
division, differentiation, circadian rhythms and the like (Goodwin, 1973; Tyson and 
Kauffman, 1975). As far as the second question is concerned a general answer may 
not emerge. There are reasons to doubt that in the course of biological evolution allos- 
teric regulation has appeared much later than the stoichiometric one. One does not 
observe in nature a progressive development of allosteric properties of enzymes. Regard- 
less of their position in phylogeny enzymes of bacteria, or low eucaryotes give no indica- 
tion of lesser allosteric control than those of mammals or man. 
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