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Abstract 

 
The availability of whole cell scale data makes analysis possible at the systems 

level. In this thesis, we try to gain a better understanding of the yeast metabolism by 

analyzing the metabolic network with the aid of genome-scale gene expression data. 

The metabolic network is examined topologically, at both the global and local levels. 

The network shows scale free property and is intrinsically modular. The loop structure 

is a statistically significant motif and may play an important role in network dynamics. 

By simulating the in silico cell, we predict theoretically the metabolic flux and 

investigate its patterns. The network is shown to consist of a backbone structure and 

its functionality is proven optimal. It is also shown that the microarray gene 

expression data can be used to reveal the dynamic organization of the metabolic 

network. Topologically different sub-networks are utilized to respond to different 

internal or external living environments.
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Chapter 1 

Introduction and Thesis Outline 

 

1.1 The Biology of Yeast 

Saccharomyces cerevisiae, commonly known as baker’s yeast or budding yeast, is 

one of the major model organisms that have been under intense study for many decades. 

The yeast Saccharomyces cerevisiae is a unicellular eukaryotic organism, existing in 

two cell types, the haploid cell and the diploid cell. The haploid cells of opposite type 

may mate to form a diploid. The diploid may sporulate to generate haploid spores of 

both  and a α  types. Saccharomyces cerevisiae contains a haploid set of 16 

chromosomes, ranging in size from 200 to 2,200 kb. The complete chromosomal 

genome is of 12,052 kb, released in April, 1996. A total of 6,183 ORFs of over 100 

amino acids long were reported. Approximately 30% of the genes already have been 

characterized experimentally. About half of the remaining 70% ORFs either contain a 

motif of a characterized class of proteins or correspond to proteins that are related to 

functionally characterized gene products. 

Basic biology on yeast is covered in most textbooks. We name a few of the 

popular ones here: Biochemistry (Mathews et al. 2000), The World of the Cell (Becker 

et al. 2000), Genes VIII (Lewin 2003), and Molecular Biology of the Cell (Alberts et al. 

2002). Three online databases contain comprehensive information on yeast and they are 

SGD (http://www.yeastgenome.org/), CYGD (http://mips.gsf.de/genre/proj/yeast/) and 

YPD (http://www.incyte.com/control/tools/proteome). 

Proteins are a major component in the cellular machinery. They have diverse 

functions ranging from catalyzing biochemical reactions, regulating transcription and 

translation, transmitting signals, transporting metabolites, to serving as structural 
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components. A detailed list of the function distribution of yeast proteins can be found in 

Appendix 1. Proteins function at their specific locations inside the cell and the full list 

is in Appendix 2.  

 

1.2 The Systemic Approach to Yeast Biology 

Decades of painstaking work has accumulated a relatively complete set of 

biochemical reactions for yeast. These reactions tell how metabolites are 

inter-converted and describe the physiology of the cell. The so-called metabolic 

network is an equal representation of the reaction set. The analysis of such a network at 

the global level belongs to the newly emerging research field of systems biology. 

Recently high-throughput experimental techniques have been producing unprecedented 

large amount of data, among which the genome-scale microarray expression data are of 

our interest. The microarray experiment measures expression levels of virtually all 

genes of an organism simultaneously. The data are intrinsically of systemic nature and 

are subject to systemic analysis. 

1.2.1 Work Done by Others 

The work done by others can be generally classified into three categories. First 

there is the analysis of the topology of cellular networks. Both top-down and bottom-up 

approaches have been taken in the study of network topology. The work by Barabasi 

and coworkers (Barabasi et al. 1999; Farkas et al. 2003; Jeong et al. 2000; Ravasz et al. 

2002) represents the first approach, where statistical characteristics of various networks 

are collected and analyzed at the global scale. They discovered the so-called scale-free 

properties of many cellular networks, which since become a fashionable topic in many 

fields of science and engineering. Alon and coworkers (Shen-Orr et al. 2002; Milo et al. 

2002; Milo et al. 2004) take the other approach, focusing on the network motifs, 

defined as recurring basic network units. The regulatory network motifs identified by 

them are argued, both theoretically and experimentally, to be dynamically significant.  
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The second category is the interference of genetic regulatory network from 

high-throughput data (D’haeseleer et al. 2000; de la Fuente et al. 2002). This approach 

follows the tradition of bioinformatics, a field developed and thriving since the early 

1990’s. Various algorithms have been developed to mine ‘meaningful’ information from 

large data sets. The identification of regulatory motifs from genome sequences is one of 

the major study foci (Bussemaker et al. 2001; Wang et al. 2002; Chen et al. 2004; Kato 

et al. 2004). Another focus is the identification of functional modules from genome 

expression data (Ihmels et al. 2002; Ihmels et al. 2003). 

The third category is the in silico modeling and simulation of the yeast cell. The 

work by Palsson and coworkers (Duarte et al. 2004) is the major force behind this way 

of understanding biology at the systemic level. The metabolic network is constructed by 

connecting all known biochemical reactions for a certain organism. Linear 

programming is used to optimize the biomass production under the steady state 

assumption. The solution yields quantitative information about the metabolic flux 

through each reaction. It is noted that systems biology is still in its infancy. Basic 

principles and main methodologies are yet to be formulated. A collection of manifestos 

can be found in the March 2002 issue of Science.  

1.2.2 Our Goals and Strategies 

The ultimate goal we are aiming at is a quantitative understanding of the yeast 

metabolic network. To achieve this goal, we characterize the network from several 

aspects. The network topology is of our first concern. Statistical measures are to be 

taken to reveal special properties of the network. With the genome-scale gene 

expression data, the investigation of network dynamics is attempted. An in silico model 

of yeast is constructed to simulate the cell’s physiology in steady state. The fluxes 

obtained from the simulation are then subject to careful study. 
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1.3 Organization of Thesis 

We will introduce the yeast metabolic network and the microarray expression data 

in Chapter 2 and Chapter 3, respectively. Chapter 4 is devoted to the analysis of the 

metabolic network in combination with the expression data. Chapter 5 continues the 

analysis, now focusing on an important concept, the network module. Both the 

searching algorithm and the results are to be discussed. An alternative way of network 

analysis, still of systemic nature, is presented in Chapter 6. Based on the iND750 model, 

we simulate the cell growth with the Flux Balance Analysis (FBA) and analyze the flux 

patterns generated by the model. In Chapter 7, we identify the network motifs and 

discuss their possible functions. Finally in Chapter 8, we summarize the whole thesis 

and provide prospects on future work.  
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Chapter 2 

Yeast Metabolic network 

 

2.1 Construction of Metabolic Network 

The raw metabolic data collected at KEGG (Kanehisa 1997; Kanehisa et al. 2000; 

http://www.genome.jp/kegg/) consist of a detailed list of biochemical reactions. 

Besides annotations for genes and genomes, KEGG contains comprehensive 

information on biochemical reactions, enzymes, and pathways. Each reaction is 

assigned a unique reaction number. From this data, one may construct a network by 

making connections between metabolites (both substrates and products) and the 

reaction they participate in. In the actual graph representation, ‘arrows’ or ‘arcs’ are 

drawn from substrates to reactions and from reactions to products. For reversible 

reactions, ‘edges’ with no directions are used instead to represent the connections. For 

S. cerevisiae, which is the focus of present study, the resulting network consists of 1007 

reactions and 1037 metabolites, with 1954 arcs and 2354 edges. In the unorganized 

form, the network is too complex to be presented for visual inspection. However, we 

are able to do some simple statistics on it.  

 

2.2 Scale free Network 

Barabasi and coworkers (Jeong et al. 2000) discovered the scale free property of 

metabolic networks. Following their work, we define the connection degree of a 

metabolite as the number of reactions connected to the metabolite. We calculated the 

connection degrees for all the 1037 metabolites and it displays a power law distribution, 

with exceptions for the tail part (Figure 2.1). Networks with a power law distribution of 
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connection degrees are called scale free networks. The tail part suggests presence of a 

few highly connected nodes in our data set. They have been termed currency 

metabolites (Table 2.1). 

Figure 2.1: The connection degree distribution of metabolites. The fitted curve has a 

power of -2.2 . 

 

H2O Orthophosphate NADH NADPH NH3 
ATP ADP Pyrophosphate CO2  
H+ NAD+ NADP+ AMP  

Table 2.1: The 13 most connected metabolites. 

 

2.3 Hierarchical Modular Network 

2.3.1 Definition of Clustering Coefficient 

The clustering coefficient is a measure of the interrelatedness of the local 

neighborhoods. For a node  with  immediate neighbors, its clustering coefficient i ik
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is given by  

2
( 1

i
i

i i

NC
k k

=
− )

,  

where  is the number of links among the  nodes. Note that  is 

the largest possible number of connections among the neighbors. The value of the 

clustering coefficient is 1 when the neighbors are maximally linked and zero when no 

links among them (Figure 2.2).  

iN ik ( 1) / 2i ik k −

C = 0 C = 1 

Figure 2.2: The clustering coefficient 

The clustering coefficient for the whole network is taken as the mean of clustering 

coefficients of all nodes.  

2.3.2 Clustering Coefficient of Random Networks 

The metabolic network consists of two types of nodes, the reaction nodes and the 

metabolite nodes. A link can only occur between different types of nodes. The 

immediate neighbors of a node are of the same type and no links among them. This 

kind of network always has zero value of clustering coefficient. To measure the 

interrelatedness of network modules, we transform the original network into a network 

of only reaction nodes. In this new network, a link is established between any two 
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reactions that are connected to at least one common metabolite in the original network. 

Here we calculate the clustering coefficients for random networks of different 

sizes. A random network is selected by starting from a random node. One additional 

node is added by randomly choosing one node from the nodes that have connections to 

the nodes already included in the random network. The procedure repeats until the size 

of the random network reaches a specified value. For a given network size, we generate 

ten random networks and an average clustering coefficient is calculated for this size.  

Figure 2.3: The clustering coefficients of random networks. 

Figure 2.3 shows two dramatic changes of clustering coefficient as the network 

size increases gradually. The first such transition occurs at about 20 and the second at 

about 50. This phenomenon is best explained if the network has hierarchical modular 

structure. 

 

2.4 Network with Main Metabolites 

In most biochemical reactions, only one or two substrates and products are 
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considered to be the ‘main’ metabolites, while others may serve as co-factors. The main 

metabolites are mostly carbon-carrying metabolites and may be later consumed for 

energy or transformed to certain products. For example, in the glycolysis reaction ATP 

+ Pyruvate  ADP + Phosphoenolpyruvate (PEP), the carbon flow is between two 

main metabolites: Pyruvate and PEP, while ATP and ADP are only facilitating the flow 

by providing the necessary energy. The complexity of the network is significantly 

reduced while non-main metabolites are removed. However, the network is still quite 

involved (Figure 2.4). 

Pajek

Figure 2.4: The network with only main metabolites. The graph is drawn with Pajek 

(Batagelj & Mrvar 1998). 
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2.5 Biochemical Pathways 

Traditional biology has accumulated a large amount of knowledge on metabolism, 

among which is the concept of biochemical pathways. Biochemical pathway is a set of 

enzyme-catalyzed reactions that are closely related in such a way that the products of a 

reaction are the substrates of another reaction. A biochemical pathway is regarded as an 

organizational unit and all the reactions within it act together to achieve a biochemical 

function. For example, the TCA cycle (or Citric Acid Cycle) is a series of reactions that 

aerobic organisms use to release energy stored in acetyl-CoA, pyruvate and 

PEP(phosphoenolpyruvate) (Figure 2.5).  

R00268R00341

R00342

R00344

R00351

R00432

R00621

R00709

R01082

R01324

R01325

R01698

R01899

R01900

R02164

R02570

R03316

CoA

CO2

Pyruvate

Acetyl-CoA

2-Oxoglutarate

Oxaloacetate

Succinate

Thiamin diphosphate

Phosphoenolpyruvate

Succinyl-CoA

Fumarate

(S)-Malate

Citrate

Lipoamide

Isocitrate

cis-Aconitate

Dihydrolipoamide

S-Succinyldihydrolipoamide

Oxalosuccinate

3-Carboxy-1-hydroxypropyl-ThPP

Pajek

Figure 2.5: The biochemical pathway of TCA cycle. 

The metabolic network shows how metabolic flux flows among the pathways. 
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Here we create a network of pathways by drawing connections between pathways that 

share one or more compounds.  

Glycolysis / Gluconeogenesis

Citrate cycle (TCA cycle)
Pentose phosphate pathway

Fructose and mannose metabolism

Galactose metabolism

Fatty acid biosynthesis (path 1)

Fatty acid biosynthesis (path 2)

Fatty acid metabolism

Biosynthesis of steroids

Urea cycle and metabolism of amino groupsPurine metabolism

Pyrimidine metabolism

Glutamate metabolism

Alanine and aspartate metabolismGlycine, serine and threonine metabolism

Methionine metabolism

Cysteine metabolism

Valine, leucine and isoleucine degradation

Valine, leucine and isoleucine biosynthesis

Lysine biosynthesis

Arginine and proline metabolism

Phenylalanine, tyrosine and tryptophan biosynthesis

beta-Alanine metabolism

Selenoamino acid metabolism

Glutathione metabolism

Starch and sucrose metabolism

Aminosugars metabolism

Glycerolipid metabolism

Inositol phosphate metabolism

Phospholipid degradation

Glycosphingolipid metabolism

Pyruvate metabolism

Glyoxylate and dicarboxylate metabolism

Propanoate metabolism

Butanoate metabolism

One carbon pool by folate

Carbon fixation

Reductive carboxylate cycle (CO2 fixation)

Vitamin B6 metabolism

Nicotinate and nicotinamide metabolism

Pantothenate and CoA biosynthesis

Biotin metabolism

Folate biosynthesis

Porphyrin and chlorophyll metabolism

Terpenoid biosynthesis

Nitrogen metabolism

Sulfur metabolism

Aminoacyl-tRNA biosynthesis

Pajek

Figure 2.6: A network of pathways. 

This network consists of 48 yeast metabolic pathways, with small pathways that 

have less than 5 reactions not included. The nodes are highly connected to each other, 

with an average number of connections of 11.3 and standard deviation of 7.5. The size 

of the node is proportional to its number of nodes it connects to. The eight pathways 

that have more than 20 connections to other pathways are Glycolysis / Gluconeogenesis, 

Citrate cycle (TCA cycle), Purine metabolism, Glutamate metabolism, Alanine and 

aspartate metabolism, Glycine, serine and threonine metabolism, Pyruvate metabolism, 

and Nitrogen metabolism. The Glycolysis / Gluconeogenesis, Citrate cycle (TCA cycle), 

and Pyruvate metabolism pathways provide most precursor metabolites to other 
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pathways and thus are highly connected. The amino acids glutamate, alanine, aspartate 

and serine act like some kind of currency metabolites and are final products or starting 

substrates for many other pathways. Nitrogen is an important element indispensable to 

many pathways including amino acids metabolism and nucleotide metabolism. Purine 

metabolism is a big pathway involving many reactions and is inevitable to be highly 

connected. 
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Chapter 3 

Expression Data 

 

3.1 Introduction to Microarray Data 

Here in this thesis we mainly use the cDNA microarray data. The genome-scale 

cDNA microarray experiment measures the expression differences under two different 

conditions, the control and the test conditions, for virtually all genes of an organism. An 

expression ratio is obtained for each gene in an experiment. The ratio tells how the 

gene’s expression is tuned to respond to the change of conditions, which could be the 

change of external environment or the deletion of one or more genes. The simultaneous 

availability of the expression ratios of all the genes in a genome-scale is of great value 

and presumably contains precious information on the underlying cellular regulatory 

mechanisms in response to the environmental stress or alteration of its internal 

organization.  

 

3.2 Preprocessing of Expression Data 

Our data set is compiled from the Stanford Microarray Database 

(http://genome-www5.stanford.edu/). After some selections we finally have a data set 

of 6126 yeast genes for 990 experiments. As a convenient way of data analysis, 

log-ratios are used instead of normal ratios. The data are also normalized such that for 

each experiment the mean log-ratio is 0 and the standard deviation is 1. Figure 3.1 

shows a portion of the raw data set using color coding of the expression value (bar on 

the right). 
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Figure 3.1: A portion of raw microarray data. 

 

3.3 Overview of Expression Data Analysis 

3.3.1 Condition-independent clustering 

A simple-minded and popular way of analyzing the genome-scale gene expression 

data is to cluster the genes, where each gene is represented by a vector in a space whose 

dimension equals the number of experiments. The initial excitement generated by the 

papers using hierarchical clustering (Michaels et al. 1998; Eisen et al. 1998) and SOM 

(Tamayo et al. 1999; Toronen et al. 1999) lead to a large number of papers on fast and 

robust clustering algorithms (Ben-Dor et al. 1999; Sharan et al. 2000; Sasik et al. 2001; 

Heyer et al. 1999) Presumably genes within the same group are in some way related 

functionally (guilty by association). The results can then be verified experimentally. 

Along this line of thinking, algorithms are developed to uncover even more 

complicated relations among genes, forming the so-called regulatory network. This 
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kind of analysis presumes the gene-gene interactions remain unchanged under all 

conditions. However, this is hardly the case since many genes have multi-functions, 

participating in different pathways under different conditions.  

3.3.2 Condition-dependent clustering 

A more advanced way of grouping genes is to cluster the conditions, together with 

the genes, the so-called biclustering (Cheng & Church; Madeira & Oliveira). A term 

that is more proper to describe what we’re looking for here is called module. A module 

is defined by both a set of genes and a set of conditions (Figure 3.2). Different modules 

may have overlapping genes or conditions. Barkai and coworkers (Ihmels et al. 2003) 

identified some 80 such modules for yeast.  

Figure 3.2: A condition-dependent cluster. 
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Chapter 4 

Analysis of the Network with Expression 
Data 

 

4.1 Integration of Network and Expression Data 

The reaction-compound network is a network of compounds and reactions, while 

the expression data are all about genes. To combine the two types of data, we note that 

the reactions connecting compounds are catalyzed by enzymes, which of course are 

encoded by genes. A reaction is active if the genes coding for the enzymes associated 

with the reaction are up-regulated. This connection between the two types of data 

enables us to map the expression data onto the metabolic network. The number of genes 

that are involved in catalyzing biochemical reactions is 826. The less number of genes 

than reactions arises naturally from the fact that some enzymes catalyze more than one 

reaction. 

In this chapter, we mainly address three questions: (1) how the network is 

activated; (2) how coherent biochemical pathways are; and (3) how network responds 

under different conditions.  

The metabolic network we have is a static description of the cell physiology, 

which may not reflect the cell state under one particular condition. Here we are 

interested in the sub-network activated under each particular condition.  
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4.2 Connectivity 

4.2.1 Definition of Connectivity 

For a metabolic network with  nodes, its connectivity is defined as 

(Barthelemy et al. 2003) 

N

2

1

n
i

i

mC
N=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ,  

where  is the number of clusters and  is the number of nodes in the ith cluster. A 

cluster is a set of nodes such that the distance between any two nodes is finite. It can be 

shown that the connectivity is 1 if all the network nodes form one cluster and  has 

the minimum value of 

n im

C
1
N

 if all the nodes are disconnected.  

4.2.2 Connectivity of Genetically Activated Network 

We calculate the connectivity for sub-networks activated under each condition. 

The activated network consists of reactions that are catalyzed by genes that have large 

expression ratios. To make the analysis statistically rigorous, for each condition, a total 

number of 12 sub-networks are produced, corresponding to 12 sets of genes ranging 

from the most expressed 10 to 120 genes. A mean value of connectivity for 

sub-networks corresponding to the same number of activated genes is obtained by 

averaging over all the 990 conditions. The significance of this measure of genetically 

activated networks is exhibited when compared with randomly activated networks. A 

randomly activated network is generated by first randomly (instead of referring to 

microarray data) selecting the top expressed genes. 
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Figure 4.1: The comparison of connectivity of genetically activated networks with 

randomly activated networks. 

The comparison (Figure 4.1) shows that at each snapshot the cell activates a well 

connected sub-network.  

 

4.3 Internal Structures of Pathways 

Biochemists have already divided the metabolic network into a number of groups 

which are called biochemical pathways. A full list of such pathways for yeast 

Sacchromyces cerevisiae is listed at Appendix 3. Each group carries out a specific 

function and genes within it are functionally closely related. For example, the lysine 

biosynthesis pathway depicts the steps that lead to the production of the amino acid 

lysine. Here we are interested in possible internal structures of such pathways. 

 With expression data, we are able to measure how coherently the genes within 

a pathway are expressed. The coherence of a pathway is taken as the average value of 

correlations between any two gene vectors within the pathway, with each condition as 
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an observation. The correlation between two genes is calculated by the covariance 

function which is defined as 

1
( ) (

N

ik i jk j
k

ij

G G G G
C

N
=

− −
=
∑ i )

, where  and  are the gene vectors of gene  and iG jG i

j , respectively, and  is the number of conditions in the gene vector.  N

For each pathway, a second coherence is calculated for a subset of genes and 

conditions. The subset is selected by first choosing the top 10% ‘active’ conditions. The 

larger the variance of expression ratios of genes under a condition, the more active the 

condition. Then the top 30% ‘active’ genes are selected under the chosen top 10% 

‘active’ conditions. Similarly, a gene is more active if the variance of its expression 

ratios is larger. The selected subset represents the core of the pathway and its coherence 

is compared with the coherence for the whole pathway (Table 4.1).  

The comparison between the two coherence measures is best viewed with a scatter 

plot (Figure 4.2). 

Figure 4.2: The coherences of pathways.  
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Pathway Coherence of whole 
pathway 

Coherence of 
‘active’ 
subset 

ATP synthesis 0.274525 0.152430 
Valine, leucine and isoleucine biosynthesis 0.224259 0.180030 
Citrate cycle (TCA cycle) 0.187592 0.277291 
Oxidative phosphorylation 0.185859 0.306662 
Glycolysis / Gluconeogenesis 0.180358 0.336866 
Aminoacyl-tRNA biosynthesis 0.141385 0.480745 
Phenylalanine, tyrosine and tryptophan biosynthesis 0.134067 0.081079 
Galactose metabolism 0.110988 0.388516 
Selenoamino acid metabolism 0.091038 0.407793 
Pyrimidine metabolism 0.090149 0.125888 
Pyruvate metabolism 0.086691 0.104087 
N-Glycan biosynthesis 0.082091 0.001663 
Purine metabolism 0.081809 0.145136 
Carbon fixation 0.073007 0.110642 
Bile acid biosynthesis 0.072376 0.206073 
Lysine biosynthesis 0.071441 0.094757 
Alanine and aspartate metabolism 0.067901 0.249354 
Nitrogen metabolism 0.064497 0.981105 
Pentose phosphate pathway 0.061125 0.173957 
Butanoate metabolism 0.058344 0.129734 
Glutamate metabolism 0.055127 0.072294 
Fatty acid metabolism 0.054934 0.045056 
Starch and sucrose metabolism 0.049627 0.288939 
Glycosylphosphatidylinositol(GPI)-anchor 
biosynthesis 

0.046884 0.028798 

Arginine and proline metabolism 0.045517 0.042904 
Fructose and mannose metabolism 0.043903 0.115142 
Aminosugars metabolism 0.042060 -0.040296 
Glycine, serine and threonine metabolism 0.040375 0.083125 
Glycosphingolipid metabolism 0.037884 -0.073516 
Lysine degradation 0.032220 0.053824 
Glycerolipid metabolism 0.031745 0.064178 
Histidine metabolism 0.028463 0.213006 
Inositol phosphate metabolism 0.028112 0.010478 
Benzoate degradation via CoA ligation 0.026282 0.111457 
Nicotinate and nicotinamide metabolism 0.020474 0.057652 
Tyrosine metabolism 0.015410 -0.077056 
Folate biosynthesis 0.015083 0.147790 
Tryptophan metabolism 0.000596 -0.117438 

Table 4.1: The coherence of pathways. 
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Each of the six pathways inside the rectangle has low coherence for the whole 

pathway and high coherence for only a subset of it. This phenomena can be explained 

when these pathways have relatively independent internal structures. While the 

interrelatedness is high inside each of the internal structures, the overall coherence of 

the whole pathway may be low due to low dependence between these structures.  

 

4.4 Network Dynamics 

We try to get some glimpses of the network dynamics by investigating how the 

network responds to the change of conditions. We base our analysis on four distinct 

categories of conditions, namely, cell cycle, DNA damage, diauxic shift, and stress 

response.  

4.4.1 Extent of Activation 

We are interested to know how big the part of network that is activated in different 

conditions. The network size is a direct measure of the extent of activation. For a given 

threshold and a particular condition, the size of activated network is calculated by 

simply counting the number of nodes in the metabolic network corresponding to the 

genes with expression ratios above the threshold. The size for a condition category is 

then obtained by averaging over all the conditions in that category. A series of 

thresholds are taken and the results shown below (Figure 4.3).  
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Figure 4.3: The size of activated networks under four categories of conditions. 

The comparison may have the following several implications: the large network 

activated under diauxic shift may be explained that the cell undergoes a major 

mechanism change to accommodate the dramatic environmental shift; the small 

network of cell cycle makes sense since cell cycle involves only a part of the metabolic 

network; and the medium size networks of DNA damage and stress response reflect that 

the cell responds moderately to relatively small perturbations.  

4.4.2 Connectivity of Activated Networks 

We next measure the connectivity for networks activated under the four categories 

of conditions (Figure 4.4). The same number of top expressed genes is selected for each 

condition and the connectivity is calculated for the corresponding metabolic network. 

The mean value of connectivity is then computed for a category of conditions by 

averaging the connectivity of all the conditions in that category. The number of selected 

genes ranges from 10 to 60, increased by 2 at each step.  
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Figure 4.4: The connectivity of networks activated under four conditions. 

The well-connected networks of DNA damage and stress response are expected 

because a part of network functioning for a common specific purpose is utilized to 

rescue the cell from damages or stringent environments. The highly specific nature of 

DNA damage explains the higher connectivity of its corresponding network. The 

diauxic shift involves too many genes which may be functionally remotely related. This 

gives poor connectivity of the network of diauxic shift.  
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Chapter 5 

Network Modules 

 

5.1 Definition of Network Module 

Previous gene clustering analysis focuses on expression data alone. Here by 

combining both the genome-scale expression data and the metabolic network, we are to 

identify local blocks on the metabolic network. We call these blocks network modules. 

A network module consists of both a set of reactions that are connected on the 

metabolic network and a set of conditions under which the genes catalyzing the set of 

reactions are closely co-expressed. Reactions are connected on the network if the 

distance between any two of them is finite. The inclusion of metabolic network may 

make the results more biologically meaningful. Different network modules may have 

overlapping reactions. This is allowed because a reaction may participate in more than 

one module.  

 

5.2 Searching Algorithm 

The expression data are represented as a two dimensional matrix , with rows as 

reactions and columns as conditions. Though the original expression data are only 

available for genes can be easily obtained since each reaction corresponds to one or 

more genes. For each of 1007 reactions, the expression value for a condition is obtained 

by taking the maximal value of the expression ratios of all its corresponding genes 

under this condition. A module consists of a set of reactions (

E

E

R ) and a set of conditions 

( ), such that a function  is maximal. The function is defined as the C ( , )F R C
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following:  

,
,

( , ) ( )i j
i R j C

F R C E Nr Nc T
∈ ∈

= − ⋅∑ ⋅ ,  

where is the number of reactions in Nr R and  is the number of conditions in , 

and  is a threshold. Note that the reactions in 

Nc C

T R  are required to be connected on 

the metabolic network. Here we are not only interested in the global maximum. Local 

maxima are also our concern. Our strategy is to start with a reaction and grow by 

including either a reaction or a condition, whichever makes larger, in one-step. The 

reaction to be added is selected from the set of reactions that are connected to any of the 

reactions already included in the module. The growth process stops when can no 

longer be increased by such move. The process is repeated with every reaction as a 

starting node. The modules found are then compared and similar modules are merged.  

F

F

 

5.3 Analysis of Modules 

5.3.1 Clustering Coefficients of Modules 

A large pool of network modules is generated with different thresholds. The 

clustering coefficients of these modules are then calculated. An average value is 

obtained by averaging the clustering coefficients of networks of the same size. The 

clustering coefficient is plotted against the module size (Figure 5.1). Also on the same 

figure is the same plot for random modules, which are identical to random 

sub-networks in Chapter 2.  
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Figure 5.1: The clustering coefficients of network modules. 

The comparison says that regardless of the hierarchical nature of the network 

topology the distribution of clustering coefficients of network modules is more 

uniform. 

5.3.2 Examples of Modules 

With a threshold of 2, 14 network modules are identified. In Table 5.1 we list the 

modules along with names of some biochemical pathways the modules overlap most.  
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Number 
of 
reactions 

Number 
of 
conditions 

Pathways the module overlaps most (Number of 
overlapped reactions) 

49 65 Glycolysis / Gluconeogenesis (17) 
Carbon fixation (8) 
Purine metabolism (5) 

43 15 Valine, leucine and isoleucine biosynthesis (11) 
Histidine metabolism (4) 

88 27 Tyrosine metabolism (10) 
Pyruvate metabolism (8) 
Citrate cycle (TCA cycle) (7) 
Glycolysis / Gluconeogenesis (6) 

15 7 Starch and sucrose metabolism (2) 
Pyrimidine metabolism (2) 
Purine metabolism (2) 
Galactose metabolism (2) 

58 13 Purine metabolism (7) 
Urea cycle and metabolism of amino groups (7) 
Sulfur metabolism (5) 
Nitrogen metabolism (5) 
One carbon pool by folate (5) 
Arginine and proline metabolism (5) 

14 13 Fatty acid metabolism (8) 
Fatty acid biosynthesis (path 2) (7) 

8 14 Folate biosynthesis (5) 
One carbon pool by folate (3) 

16 12 Purine metabolism (6) 
Pyrimidine metabolism (5) 

19 13 Galactose metabolism (8) 
31 13 Purine metabolism (10) 
42 7 Fatty acid biosynthesis (path 1) (30) 
16 19 C21-Steroid hormone metabolism (10) 

Androgen and estrogen metabolism (6) 
6 134 Starch and sucrose metabolism (2) 
11 187 Pentose phosphate pathway (4) 

Table 5.1: The network modules and pathways they overlap most. 
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Chapter 6 

Flux Balance Analysis of the Network 

 

6.1 Introduction to FBA 

Flux balance analysis (Varma & Palsson 1994; Bonarius et al. 1997; Edwards & 

Palsson 1999; Gombert & Nielsen 2000), or FBA, is to find the flux for each reaction in 

the network by linear programming, while the cell is in steady state. A more recent 

review on FBA is available (Kauffman et al. 2003). The stochiometric matrix  is a 

two-dimensional matrix with columns representing biochemical reactions and rows 

metabolites. The matrix elements are the reaction coefficients, with coefficients for 

substrates negative and products positive. Obviously, each column stands for one 

reaction and the matrix as a whole is a complete representation of the cell’s biochemical 

reactions. Distinction is made between the so-called ‘internal’ and ‘exchange’ 

metabolites. The internal metabolites reside inside the cell and should be kept at 

constant concentrations in the steady state, while the exchange metabolites can be 

transported across the cell’s membrane and their concentrations are not constrained. 

 is the stochiometirc matrix for the internal metabolites only. The reaction flux is 

represented as a column vector . The steady state of the cell thus requires that 

. Other constraints may include thermodynamic constraints (e.g. irreversibility 

of certain reactions) or capacity constraints (e.g. maximum uptake rate for a given 

compounds) (Figure 6.1).  

S

inS

v

0inS v =i
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Figure 6.1: The flux balance analysis. The gray circle represents the optimal solution. 

With all these constraints, an objective function, usually in the form of biomass 

production, is subject to maximization. This problem is a standard linear programming 

problem and can be solved easily with various software packages. 

 

6.2 iND750 Model 

The most recent in silico yeast model developed by Palsson’s group is the iND750 

model (Duarte et al. 2004; http://gcrg.ucsd.edu/organisms/yeast.html). The model 

includes 1149 reactions and 1061 metabolites. Note that the same compound that 

occurs in different compartments corresponds to more than one compound here. 

Regardless of the location, the number of chemically unique compounds is 646. Among 

the 1061 metabolites, there are 116 exchange metabolites. All the other 945 internal 

metabolites should thus be maintained at constant concentrations at steady state. The 

biomass consists of amino acids, nucleotides, carbohydrates, lipids and energy 

molecules in proper proportion. In the model, the biomass production is represented as 

the 1150th reaction. The model is then solved with LINDO (Lindo Systems, Inc.) linear 

programming package. 

 

Constraints: 
(i) Stoichiometric 
(ii) Thermodynamic
(iii) Capacity 

Bounded 

convex 

FluxC FluxC 

Unbounded 

solution space 

FluxB FluxB

FluxA FluxA 
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6.3 Flux Backbone 

6.3.1 The Idea 

We are interested in how the flux pattern changes when the cell is fed with 

different carbon sources. Before actual simulations are carried out, a reasonable 

conjecture would be that a flux backbone exists. The flux backbone should be utilized 

regardless what carbon sources are available. This structure reduces network 

complexity and increases the cell’s efficiency and thus chance of survival. In the 

following two sections, we test the idea on both aerobic and anaerobic conditions. 

6.3.2 Flux Backbone under Aerobic Conditions 

In Palsson’s aerobic glucose minimal medium simulation 

(http://gcrg.ucsd.edu/organisms/yeast/yeast_faqs.html), other than the eight 

unconstrained ‘basic’ compounds (Table 6.1) only glucose is available for the cell to 

consume.  

O2 Ammonium Sulfate Phosphate 
H2O K+ Sodium CO2 

Table 6.1: The eight aerobic basic compounds. 

With unlimited uptake rates of the eight basic compounds as in Palsson’s aerobic 

glucose minimal medium example, we do the simulations by feeding the cell with each 

of the 108 remaining exchange compounds. Nonzero biomass is obtained for 43 of the 

compounds. For each of the 43 compounds fed to the cell, we list the number of 

reactions activated (Table 6.2).
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Fed compounds Number of 
activated 
reactions 

Fed compounds Number of 
activated 
reactions 

Acetate 296 Trehalose 284 
Ethanol 294 Guanosine 284 
4-Aminobutanoate 294 Ornithine 283 
Pyruvate 292 L-Arginine 283 
Citrate 292 Xylitol 282 
2-Oxoglutarate 292 D-Mannose 282 
1,3-beta-D-Glucan 290 D-Glucose 282 
Adenosine 3',5'-bisphosphate 289 L-Aspartate 282 
L-Alanine 289 L-Asparagine 282 
Acetaldehyde 289 Adenosine 282 
Melibiose 288 D-Ribose 281 
L-Glutamine 288 Uridine 280 
Succinate 287 D-Galactose 280 
Sucrose 286 Cytidine 280 
D-Sorbitol 286 Inosine 279 
L-Proline 286 D-Glucosamine 

6-phosphate 
279 

D-Xylose 285 Fumarate 279 
Maltose 285 D-Fructose 278 
L-Malate 285 S-Adenosyl-L-methionine 277 
Glycerol 285 L-Serine 276 
L-Glutamate 285 Glycine 275 
Xanthosine 284 MEAN 284.6 

Table 6.2: Number of reactions activated for 43 carbon sources. 

The flux backbone consists of 188 reactions, which are activated in all of the 43 

cases.  

6.3.3 Flux Backbone under Anaerobic Conditions 

In Palsson’s anaerobic simulation, there are 13 basic compounds (Table 6.3).  
Ammonium Sulfate Phosphate H2O K+ 
Sodium CO2 Ergosterol zymosterol  
octadecanoate 
(n-C18:0) 

octadecenoate 
(n-C18:1) 

octadecynoate 
(n-C18:2) 

hexadecenoate 
(n-C16:1) 

 

Table 6.3: The 13 anaerobic basic compounds. 

 31



We then do the anaerobic simulations by feeding the cell with one of the 103 

exchange compounds (the 13 basic compounds are excluded from the 116 exchange 

compounds). We get nonzero biomass productions for 17 of the compounds. Note that 

all the 17 compounds here are also present in 43 compounds which make the cell viable 

under the aerobic condition. The number of reactions activated for each of the 17 

carbon sources is listed below (Table 6.4). 

Fed compounds Number of 
activated 
reactions 

Fed compounds Number of 
activated 
reactions 

Melibiose 267 D-Ribose 264 
Xanthosine 266 D-Mannose 264 
1,3-beta-D-Glucan 266 Adenosine 264 
Sucrose 265 D-Glucose 263 
Maltose 265 D-Galactose 263 
Guanosine 265 Inosine 259 
D-Glucosamine 6-phosphate 265 L-Serine 257 
D-Fructose 265 S-Adenosyl-L-methionine 255 
Trehalose 264 MEAN 263.4 

Table 6.4: Number of reactions activated for 17 carbon sources. 

The flux backbone consists of 209 reactions, which are activated in all of the 17 

cases. The number of the common reactions in both the aerobic backbone and anaerobic 

backbone is 144. 

6.3.4 Discussions 

The existence of this large backbone structure shows that various carbon sources 

can be converted to some common precursors in relatively few steps. The backbone is 

then utilized to produce biomass constituents from the small number of precursors, thus 

sustaining the cell growth.  
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6.4 Flux Patterns for Biomass with Different 

Constituents 

6.4.1 Biomass Constituents 

The 43 biomass constituents in the iND750 model can be grouped into 5 

categories, namely, amino acids, nucleotides, carbohydrates, lipids, and other molecules 

(Table 6.5) 

Amino acids 
(20) 

Nucleotides 
(8) 

Carbohydrates 
(4) 

Lipids (8) Others (3)

L-Alanine dAMP 13BDglcn ergst atp 
L-Arginine dCMP glycogen pa_SC h2o 
L-Asparagine dGMP mannan pc_SC so4 
L-Aspartate dTMP tre pe_SC  
L-Cysteine AMP  ps_SC  
L-Glutamine CMP  ptdlino_SC  
L-Glutamate GMP  triglyc_SC  
Glycine UMP  zymst  
L-Histidine     
L-Isoleucine     
L-Leucine     
L-Lysine     
L-Methionine     
L-Phenylalanine     
L-Proline     
L-Serine     
L-Threonine     
L-Tryptophan     
L-Tyrosine     
L-Valine     

Table 6.5: The biomass constituents. 

6.4.2 Simulations with Simple Biomass 

Since the ‘real’ biomass has more than 40 constituents, we thus speculate that the 

activated sub-network should be much simpler if we simulate with a simpler version of 

biomass. To test the idea, we perform the simulation by each time choosing one of the 
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40 original constituents (atp, h2o and so4 are not included.) as the sole component of 

biomass under the aerobic glucose minimal medium. The rate of glucose uptake is set 

as 10. We obtain a sub-network, the part of the network that consists of the activated 

reactions, for each of the biomasses (Table 6.6).  

Biomass Constituent # of 
reactions 
activated

Biomass Constituent # of 
reactions 
activated

Ergosterol 95 L-Lysine 69 
Phosphatidylcholine 90 L-Histidine 69 
phosphatidylethanolamine 84 GMP 68 
L-Tryptophan 84 L-Isoleucine 67 
zymosterol 83 L-Phenylalanine 65 
phosphatidyl-1D-myo-inositol 81 L-Leucine 61 
dCMP 80 L-Asparagine 60 
L-Cysteine 80 L-Proline 57 
phosphatidylserine 79 L-Aspartate 57 
dGMP 78 L-Valine 55 
triglyceride 77 Mannan 54 
L-Methionine 77 L-Threonine 51 
L-Arginine 77 glycogen 50 
Phosphatidate 76 1,3-beta-D-Glucan 49 
UMP 76 Trehalose 48 
dTMP 76 L-Glutamine 45 
CMP 75 L-Serine 42 
AMP 75 L-Glutamate 42 
dAMP 74 Glycine 39 
L-Tyrosine 69 L-Alanine 35 
  All 40 constituents 282 

Table 6.6: Number of reactions activated with each of the constituents as biomass.  

Here we define a quantity called centrality to measure how close each of the 

sub-network is from the ‘central part’ of the network. The central part consists of 

reactions that are activated in most cases. The higher the centrality, the less specific the 

sub-network. For sub-network  with  reactions, the centrality is calculated as  i in

1,

1
( 1)

N

i i
j j ii

C M
N n = ≠

=
− ∑ j , 

where ijM  is the number of overlapping reactions between sub-networks  and i j , 
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and  is total number of sub-networks, which is 40 here. The results are shown 

below (Table 6.7).  

N

Biomass Centrality Biomass Centrality 
Glycine 0.74227 L-Proline 0.59019 
L-Aspartate 0.73099 Phosphatidate 0.58974 
L-Serine 0.69902 dTMP 0.58063 
L-Asparagine 0.68932 L-Methionine 0.57742 
L-Threonine 0.68175 triglyceride 0.57576 
L-Glutamate 0.67216 dAMP 0.57554 
Trehalose 0.67201 CMP 0.56991 
1,3-beta-D-Glucan 0.65882 phosphatidylserine 0.5693 
L-Glutamine 0.65242 L-Arginine 0.56743 
L-Alanine 0.65201 dCMP 0.56474 
glycogen 0.63487 phosphatidyl-1D-myo-inositol 0.55651 
L-Phenylalanine 0.63471 dGMP 0.53649 
L-Valine 0.61911 phosphatidylethanolamine 0.52595 
Mannan 0.61349 L-Cysteine 0.52244 
L-Isoleucine 0.60926 L-Tryptophan 0.51282 
UMP 0.60493 Phosphatidylcholine 0.49715 
L-Tyrosine 0.60126 zymosterol 0.49521 
GMP 0.59389 L-Leucine 0.46742 
L-Histidine 0.59123 L-Lysine 0.45373 
AMP 0.59043 Ergosterol 0.45236 

Table 6.7: The networks ranked according to their centralities. 

 

6.5 Optimality of Network 

6.5.1 Excretions of Network 

Since the cell only maximizes its growth rate, we thus conceive that some ‘useful’ 

compounds may be excreted by the cell. But wasting some useful compounds is 

certainly not a good choice for the cell. To investigate this problem, we grow our in 

silico cell by feeding it with various carbon sources under minimal aerobic media and 

see what the cell excretes while maximizing the biomass production. The results are 

shown below (Table 6.8). 
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Carbon source Excretion 
1,3-beta-D-Glucan CO2, H2O, H+ 
4-Aminobutanoate CO2, Formate, H2O, Ammonium, Urea 
Acetate CO2, Formate, H2O, Urea 
Acetaldehyde CO2, H2O, H+ 
Adenosine CO2, Formate, H2O, Hypoxanthine, Ammonium, 

Xanthine 
2-Oxoglutarate CO2, Formate, H2O, Urea 
L-Alanine CO2, Formate, H2O, Ammonium, Urea 
S-Adenosyl-L-methionine CO2, H+, Hypoxanthine, L-Methionine, Ammonium, 

Xanthine 
L-Arginine CO2, H2O, H+, Urea, Xanthine 
L-Asparagine CO2, Formate, Ammonium, Urea 
L-Aspartate CO2, Formate, H2O, Ammonium, Urea 
Citrate CO2, Formate, H2O, Urea 
Cytidine CO2, Formate, H2O, Ammonium, Thymine 
Ethanol CO2, H2O, H+ 
D-Fructose CO2, H2O, H+ 
Fumarate CO2, Formate, H2O, Urea 
D-Galactose CO2, H2O, H+ 
D-Glucosamine 
6-phosphate 

CO2, Formate, H2O, H+, Ammonium, Phosphate 

D-Glucose CO2, H2O, H+ 
L-Glutamine CO2, Formate, H2O, Ammonium, Urea 
L-Glutamate CO2, Formate, H2O, Urea 
Glycine CO2, Formate, H2O, Ammonium, Urea 
Glycerol CO2, H2O, H+ 
Guanosine CO2, Guanine, H2O, H+ 
Inosine CO2, H2O, H+, Hypoxanthine 
L-Malate CO2, Formate, H2O, Urea 
Maltose CO2, H2O, H+ 
D-Mannose CO2, H2O, H+ 
Melibiose CO2, H2O, H+ 
Ornithine CO2, Formate, H2O, Ammonium, Urea 
Adenosine 
3',5'-bisphosphate 

CO2, Formate, H2O, H+, Phosphate, Xanthine 

L-Proline CO2, Formate, H2O, Ammonium, Urea 
Pyruvate CO2, Formate, H2O, Urea 
D-Ribose CO2, H2O, H+ 
D-Sorbitol CO2, H2O, H+ 
L-Serine CO2, Formate, H2O, Ammonium 
Succinate CO2, Formate, H2O, Urea 
Sucrose CO2, H2O, H+ 
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Trehalose CO2, H2O, H+ 
Uridine CO2, H2O, H+, Thymine 
Xanthosine CO2, H2O, H+, Xanthine 
D-Xylose CO2, H2O, H+ 
Xylitol CO2, H2O, H+ 

Table 6.8: The excretions of the cell when fed with different carbon sources. 

The list shows that only a few compounds are excreted. Some of them are ‘natural’ 

wastes since they are either carbon-free metabolites (H2O, H+, Ammonium, Phosphate) 

or metabolites with carbons in very low energy states (CO2, Formate, Urea). The other 

wastes are Guanine, Thymine, Hypoxanthine, Xanthine, and L-Methionine. Most of the 

external compounds still are not excreted.  

The results indicate that the metabolic network consists of highly independent 

modules and each of them is efficiently constructed. The conclusion may not be right if 

the network forbids the excretion of most of the external compounds. To find out 

whether this is the case, we maximize the production of the external compound and see 

if we get positive values (Table 6.9 & Table 6.10). 

 

Acetate Ethanol Hypoxanthine D-Sorbitol 
Acetaldehyde Formate L-Isoleucine L-Serine 
2-Oxoglutarate Fumarate L-Leucine Succinate 
L-Alanine D-Glucosamine 

6-phosphate 
L-Lysine L-Threonine 

L-Arginine L-Glutamine L-Malate Thymine 
L-Asparagine L-Glutamate L-Methionine L-Tryptophan 
L-Aspartate Glycine Ornithine L-Tyrosine 
Citrate Glycerol Adenosine 

3',5'-bisphosphate 
Urea 

L-Cysteine Guanine L-Phenylalanine L-Valine 
dTTP H+ (R)-Pantothenate Xanthine 
Ergosterol L-Histidine L-Proline zymosterol 

Table 6.9: The list of possible products under the aerobic glucose minimal 

medium. 

 37



 

1,3-beta-D-Glucan Cytidine Inosine Spermidine 
4-Aminobutanoate Deoxyadenosine L-Lactate Spermine 
5-Amino-4-oxopentanoate 7,8-Diaminononanoate Maltose L-Sorbose 
8-Amino-7-oxononanoate Deoxycytidine D-Mannose Sucrose 
L-Arabinitol Deoxyguanosine Melibiose Thiamin 
Adenine Deoxyinosine S-Methyl-L-methionine Thiamin 

monophosphate
Adenosine Deoxyuridine NMN Thiamine 

diphosphate 
Allantoin FMN octadecanoate 

(n-C18:0) 
Thymidine 

Allantoate D-Fructose octadecenoate 
(n-C18:1) 

Trehalose 

S-Adenosyl-L-methionine D-Galactose octadecynoate 
(n-C18:2) 

tetradecanoate 
(n-C14:0) 

D-Arabinose Glycolaldehyde peptide Uracil 
L-Arabinose Guanosine Putrescine Uridine 
Biotin Oxidized glutathione Pyruvate Xanthosine 
Choline Hexadecanoate 

(n-C16:0) 
D-Ribose D-Xylose 

L-Carnitine hexadecenoate 
(n-C16:1) 

Riboflavin Xylitol 

Cytosine myo-Inositol L-Sorbitol  

Table 6.10: The list of impossible products under the aerobic glucose minimal medium. 

The results show that a total number of 63 external compounds are impossible to 

be made under the aerobic glucose minimal medium. 

6.5.2 Leakages of Internal Metabolites 

To further investigate the optimality of the network, we allow the internal 

metabolites to be leaked out while maximizing the biomass production. Surprisingly, 

the leakages of only two internal metabolites lead to larger biomass production. These 

two metabolites are h[m] (hydrogen ion in mitochondrion) and hco3[c] (bicarbonate in 

cytosol). The fact that most internal metabolites don’t leak out even if allowed to do so 

illustrates that the network is internal optimized. 
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6.5.3 Superposition of Solutions 

In section 6.4.2, we simulate the cell with biomass set to each of the 40 original 

constituents. The biomass production is now our concern (Table 6.11). Along with the 

biomass production, we also list the coefficients of the 40 constituents in the original 

biomass reaction. At the last row of Table 6.11, we list the biomass production for 

biomass consisting of all the 40 constituents with original coefficients. Note the glucose 

uptake rate is 10 in all cases.  

Biomass constituent Coefficient in original 
biomass reaction 

Biomass production 

L-Alanine 0.458800 17.142858 
L-Arginine 0.160700 6.938389 
L-Asparagine 0.101700 12.577320 
L-Aspartate 0.297500 15.844155 
L-Cysteine 0.006600 8.913526 
L-Glutamine 0.105400 10.000000 
L-Glutamate 0.301800 10.000000 
Glycine 0.290400 20.000000 
L-Histidine 0.066300 6.765250 
L-Isoleucine 0.192700 7.311828 
L-Leucine 0.296400 6.666666 
L-Lysine 0.286200 6.666667 
L-Methionine 0.050700 6.182432 
L-Phenylalanine 0.133900 5.335277 
L-Proline 0.164700 9.539749 
L-Serine 0.185400 17.142857 
L-Threonine 0.191400 12.750000 
L-Tryptophan 0.028400 4.073107 
L-Tyrosine 0.102000 5.583524 
L-Valine 0.264600 9.230769 
dAMP 0.003600 4.295775 
dCMP 0.002400 5.198863 
dGMP 0.002400 4.246714 
dTMP 0.003600 4.647619 
AMP 0.046000 4.455265 
CMP 0.044700 5.269761 
GMP 0.046000 4.365904 
UMP 0.059900 5.600612 
1,3-beta-D-Glucan 1.134800 8.974359 
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glycogen 0.518500 8.974359 
Mannan 0.807900 8.974358 
Trehalose 0.023400 4.605263 
Ergosterol 0.000700 0.919714 
Phosphatidate 0.000006 0.009478 
Phosphatidylcholine 0.000060 0.007994 
phosphatidylethanolamine 0.000045 0.008954 
phosphatidylserine 0.000017 0.008992 
phosphatidyl-1D-myo-inositol 0.000053 0.008492 
triglyceride 0.000066 0.006478 
zymosterol 0.001500 0.966847 
All 40 constituents  1.4098 

Table 6.11: The biomass productions with different biomass constituents. 

Given the biomass yield with the production of each of the 40 constituents 

optimized, we can get a superposition solution for the simultaneous optimization of all 

of them with the original proportion in the iND750 model. When constituent  is 

optimized only, the yield is denoted as . Let  be the optimal solution when all  

constituents are included in the biomass formula,

iC

iy opY n

1

n

i i
i

M Cα
=

=∑ , where iα  is the 

proportion of . The superposition solution satisfiesiC sp i i iY yα β= , where iβ  is the 

proportion of carbon source uptake and 
1

1
n

i
i
β

=

=∑ . By 1 we mean a unit of carbon 

source uptake rate.  

Solution to these equations are given as ( / )i sp i iY yβ α= , and 

1

1

/
sp n

i i
i

Y
yα

=

=

∑
. We 

now compare spY  with the optimal solution . From Table 6.10, opY spY  is easily 

calculated as 1.3470 and the ratio /sp oY Y p  equals 95.54%.  

The fact that the superposition solution is so close to the optimal solution is quite a 

surprise. It may imply that the network consists of highly independent modules, a 

property we plan to explore further.  
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Chapter 7 

Loop Structures in Network 

 

7.1 Loops as Network Motifs 

By definition, network motifs are significantly recurring units in the network. We 

apply Mfinder (Milo et al. 2002) to the network and identify the motifs with 4 nodes 

The only 4 node motif found out of a total number of 199 possible sub-graphs with size 

4 is the loop structure (Table 7.1). 

Number of 
random networks

Frequency in real 
network ( ) F

Mean frequency 
in random 

network ( ) mF

Standard 
deviation of 
frequency in 
random network 
( ) STD

Z 
score 

1001 864 16.4 4.5 189.81

Table 7.1: Statistics generated by Mfiner. Z score is a measure of the distance in 

standard deviation of a sample from the mean, or ( ) /mZ F F STD= − .  

 

7.2 Loop Enumeration 

Before finding loops, we simplify the network by first removing some currency 

compounds (Table 7.2) and then removing nodes that have zero or one connections and 

reaction nodes that connect to either only substrates or products.  

Currency compounds 
adp amp atp cdp cmp co2 coa ctp fad fadh2 gdp gmp gtp h h2o h2o2 k na1 nad nadh 
nadp nadph o2 pi ppi q6 q6h2 so4 udp ump utp 

Table 7.2: The currency compounds removed from the network. 

The simplified network has only 785 reactions and 588 compounds. An algorithm 

 41



of loop enumeration (see Appendix 5 for Matlab® (MathWorks Inc.) code) is carried 

out on this simplified network. Loops with length up to 12 have been completely 

identified (Table 7.3). 

Number of 
loops 

645 313 1380 3423 17921 

Loop length 4 6 8 10 12 

Table 7.3: The number of loops with different lengths. 

In the above network, we don’t distinguish between reversible and nonreversible 

reactions, with all reactions treated as reversible. Here we remove non-physical loops 

(Figure 1) by put the reversibility of reactions into consideration.  

Figure 7.1: Non-physical loops. Circles represent for 

compounds and rectangles for reactions. 

The number of loops is shown below (Table 7.4) after the removal.  

Number of loops 290 110 502 665 4312 
Loop length 4 6 8 9 12 

Table 7.4: The number of loops after removal of non-physical loops. 

Some loops may have the same set of compounds and differ only in their reaction 

set. We merge this kind of loops and the loop number is considerably reduced (Table 

7.5). 

Number of loops 78 44 119 157 452 
Loop length 4 6 8 10 12 

Table 7.5: The number of loops with unique set of compounds. 

The loop number is further reduced when we don’t distinguish between the same 

compounds at different cellular compartments (Table 7.6). 

Number of loops 65 42 109 147 419 
Loop length 4 6 8 10 12 

Table 7.6: The number of loops when no distinction is made between different 

compartments. 
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7.3 2-Compound Loops 

7.3.1 Grouping of 2-Compound Loops 

If we think the loops as carriers of chemical parts, we then are able to identify 

these parts for 2-compound loops (or 2-C loops) (Table 7.7). 

Chemical parts Frequency in 2-C loops Frequency in 2-C-2-R loops 
HO-3P-1 9 9 
* 8 19 
H2 7 21 
O3P 4 4 
H4NO-1 3 167 
H2NO-1 3 14 
CO 2 5 
C9H11N2O8P 2 2 
C5H8O4 2 2 
C4H3O-1 2 2 
C2H2O 2 6 
O300P100 1 1 
HO 1 1 
H 1 3 
CH2O 1 1 
CH2 1 4 
CH-1O2 1 1 
C5H6NO3 1 1 
C5H4O4 1 1 
C4H8NO2 1 1 
C4H7NO2 1 2 
C4H2 1 1 
C3HO3 1 10 
C3H5NO2 1 1 
C3H4O2 1 1 
C2HO2 1 1 
C2H4O2 1 1 
C14H17N6O13P3S 1 1 
C10H14N3O6S 1 1 
C10H12N5O3 1 1 
C10H11N5O3 1 1 
C 1 4 

Table 7.7: The grouping of 2-compound loops.  
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Here the chemical parts, or load on the carriers, are defined as the constituent 

difference between the two compounds. The star symbol (*) in the table represents a 

null load, which corresponds to a transport loop. In such a loop, the same compound 

flows in and out of a compartment. 

Some loops identified by our algorithm may not be what we’re looking for. One of 

such situations arises when different reactions have the same sets of substrates and 

products. Totally 4 sets of such reaction pairs are present in the iND750 model (Table 

7.8). 

Reaction ORF 
accoa + crn --> acrn + coa YML042W 
acrn + coa --> accoa + crn YAR035W 
dhlam + nad <==> h + lpam + 
nadh 

(YDR019C YMR189W YAL044C YFL018C) 

dhlam + nad --> h + lpam + 
nadh 

(YIL125W YDR148C YFL018C) 

fad + succ <==> fadh2 + fum (YDR178W YKL141W YKL148C YLL041C) or 
(YKL141W YKL148C YLL041C YLR164W) or 
(YDR178W YKL148C YLL041C YMR118C) or 
(YDR178W YJL045W YKL141W YLL041C) 

fadh2 + fum --> fad + succ YJR051W 
34hpp + glu-L --> akg + tyr-L YGL202W or YHR137W 
akg + tyr-L <==> 34hpp + glu-L YLR027C 

Table 7.8: The four reactions that lead to ‘fake’ loops. 

Now with transport loops and ‘fake’ loops removed, we have 54 2-compound 

loops left (Table 7.9). 

Compound 1 Formula 1 Compound 2 Formula 2 Common 
part 

Different 
part 

5,6,7,8-Tetrah
ydrofolate 

C19H22N7
O6 

5,10-Methylenet
etrahydrofolate 

C20H22N7
O6 

C19H22N7
O6 C 

L-Homocyste
ine 

C4H9NO2S S-Adenosyl-L-h
omocysteine 

C14H20N6
O5S C4H9NO2S C10H11N5

O3 

L-Methionine C5H11NO2
S 

S-Adenosyl-L-
methionine 

C15H23N6
O5S 

C5H11NO2
S 

C10H12N5
O3 

Reduced 
glutathione 

C10H16N3
O6S 

Oxidized 
glutathione 

C20H30N6
O12S2 

C10H16N3
O6S 

C10H14N3
O6S 

Acetyl-ACP C13H23N2
O8PRS 

acyl carrier 
protein 

C11H21N2
O7PRS 

C11H21N2
O7PRS C2H2O 

L-Carnitine C7H15NO3 O-Acetylcarniti C9H17NO4 C7H15NO3 C2H2O 
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ne 
D-Xylulose 
5-phosphate C5H9O8P Glyceraldehyde 

3-phosphate C3H5O6P C3H5O6P C2H4O2 

L-Malate C4H4O5 Citrate C6H5O7 C4H4O5 C2HO2 
(R)-S-Lactoyl
glutathione 

C13H20N3
O8S 

Reduced 
glutathione 

C10H16N3
O6S 

C10H16N3
O6S C3H4O2 

L-Homocyste
ine C4H9NO2S L-Cystathionine C7H14N2O

4S C4H9NO2S C3H5NO2 

Malonyl-[acy
l-carrierprotei
n] 

C14H22N2
O10PRS 

acyl carrier 
protein 

C11H21N2
O7PRS 

C11H21N2
O7PRS C3HO3 

6,7-Dimethyl
-8-(1-D-ribity
l)lumazine 

C13H18N4
O6 

4-(1-D-Ribityla
mino)-5-aminou
racil 

C9H16N4O
6 

C9H16N4O
6 C4H2 

2-Oxoglutarat
e C5H4O5 3-(4-Hydroxyph

enyl)pyruvate C9H7O4 C5H4O4 C4H3O-1 

L-Cystathioni
ne 

C7H14N2O
4S L-Cysteine C3H7NO2S C3H7NO2S C4H7NO2 

O-Succinyl-L
-homoserine C8H12NO6 Succinate C4H4O4 C4H4O4 C4H8NO2 

Ammonium H4N L-Glutamate C5H8NO4 H4N C5H4O4 

Ammonium H4N L-Glutamine C5H10N2O
3 H4N C5H6NO3 

Adenosine C10H13N5
O4 Adenine C5H5N5 C5H5N5 C5H8O4 

Guanine C5H5N5O Guanosine C10H13N5
O5 C5H5N5O C5H8O4 

UDPglucose C15H22N2
O17P2 

D-Glucose 
1-phosphate C6H11O9P C6H11O9P C9H11N2O

8P 
UDPgalactos
e 

C15H22N2
O17P2 

alpha-D-Galacto
se 1-phosphate C6H11O9P C6H11O9P C9H11N2O

8P 

L-Glutamate C5H8NO4 4-Aminobutano
ate C4H9NO2 C4H8NO2 CH-1O2 

L-Glutamate C5H8NO4 L-Aspartate C4H6NO4 C4H6NO4 CH2 
Glyceraldehy
de 
3-phosphate 

C3H5O6P D-Erythrose 
4-phosphate C4H7O7P C3H5O6P CH2O 

Reduced 
glutathione 

C10H16N3
O6S 

S-Formylglutath
ione 

C11H16N3
O7S 

C10H16N3
O6S CO 

5,6,7,8-Tetrah
ydrofolate 

C19H22N7
O6 

10-Formyltetrah
ydrofolate 

C20H22N7
O7 

C19H22N7
O6 CO 

Ferrocytochro
me c 

C42H53FeN
8O6S2 

Ferricytochrome 
c 

C42H52FeN
8O6S2 

C42FeH52N
8O6S2 H 
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Glycerol 
3-phosphate C3H7O6P Dihydroxyaceto

ne phosphate C3H5O6P C3H5O6P H2 

5,10-Methyle
netetrahydrof
olate 

C20H22N7
O6 

5,10-Methenylte
trahydrofolate 

C20H20N7
O6 

C20H20N7
O6 H2 

Oxaloacetate C4H2O5 L-Malate C4H4O5 C4H2O5 H2 

Orotate C5H3N2O4 (S)-Dihydroorot
ate C5H5N2O4 C5H3N2O4 H2 

Succinate C4H4O4 Fumarate C4H2O4 C4H2O4 H2 
Reduced 
thioredoxin XH2 Oxidized 

thioredoxin X X H2 

L-Aspartate C4H6NO4 L-Asparagine C4H8N2O3 C4H6NO3 H2NO-1 
D-Glucosami
ne 
6-phosphate 

C6H13NO8
P 

D-Fructose 
6-phosphate C6H11O9P C6H11O8P H2NO-1 

L-Glutamate C5H8NO4 L-Glutamine C5H10N2O
3 C5H8NO3 H2NO-1 

L-Glutamate C5H8NO4 2-Oxoglutarate C5H4O5 C5H4O4 H4NO-1 
Pyruvate C3H3O3 L-Alanine C3H7NO2 C3H3O2 H4NO-1 

L-Tyrosine C9H11NO3 3-(4-Hydroxyph
enyl)pyruvate C9H7O4 C9H7O3 H4NO-1 

5,10-Metheny
ltetrahydrofol
ate 

C20H20N7
O6 

5-Formyltetrahy
drofolate 

C20H21N7
O7 

C20H20N7
O6 HO 

Deoxyuridine C9H12N2O
5 dUMP C9H11N2O

8P 
C9H11N2O
5 HO-3P-1 

D-Fructose 
6-phosphate C6H11O9P 

D-Fructose 
2,6-bisphosphat
e 

C6H10O12P
2 C6H10O9P HO-3P-1 

D-Fructose 
1,6-bisphosph
ate 

C6H10O12P
2 

D-Fructose 
6-phosphate C6H11O9P C6H10O9P HO-3P-1 

Glycerol C3H8O3 Glycerol 
3-phosphate C3H7O6P C3H7O3 HO-3P-1 

Inosine C10H12N4
O5 IMP C10H11N4

O8P 
C10H11N4
O5 HO-3P-1 

Phytosphingo
sine 

C18H40NO
3 

Phytosphingosin
e 1-phosphate 

C18H39NO
6P 

C18H39NO
3 HO-3P-1 

Pyridoxamine C8H13N2O
2 

Pyridoxamine 
5'-phosphate 

C8H12N2O
5P 

C8H12N2O
2 HO-3P-1 

Sphinganine C18H40NO
2 

Sphinganine 
1-phosphate 

C18H39NO
5P 

C18H39NO
2 HO-3P-1 

Thymidine C10H14N2
O5 dTMP C10H13N2

O8P 
C10H13N2
O5 HO-3P-1 
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Phosphatidate C3540H654
4O800P100 

diacylglycerol 
pyrophosphate 

C3540H654
4O1100P20
0 

C3540H654
4O800P100 O300P100 

dATP C10H12N5
O12P3 dADP C10H12N5

O9P2 
C10H12N5
O9P2 O3P 

dGMP C10H12N5
O7P dGDP C10H12N5

O10P2 
C10H12N5
O7P O3P 

dGTP C10H12N5
O13P3 dGDP C10H12N5

O10P2 
C10H12N5
O10P2 O3P 

ITP C10H11N4
O14P3 IDP C10H11N4

O11P2 
C10H11N4
O11P2 O3P 

Table 7.9: The 54 2-compound loops. 

7.3.2 Removal of 2-Compound Loops 

We remove the 290 2-compound loops and then enumerate 3,4,5,6-compound 

loops (Table 7.10).  

Number of loops after removal of 2-C loops 0 22 65 27 54 
Loop length 4 6 8 9 12 

Table 7.10: The number of loops after removal of 2-compound loops. 

Note that the loop numbers have been significantly reduced, and this observation 

lets us think that probably the 2-compound loops are the major contributor to the 

overall network complexity. The idea is further tested by removing the 2-compounds in 

a flux network, which is the part of the whole network that actually carries flux in a 

given simulation. Here the flux network we examine is the one under the aerobic 

glucose minimal medium (Section 6.3.2). Figure 7.2 shows the flux network after the 

removal of 2-compound loops. The network becomes so simple that it is now ready for 

visual inspection. 
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Pajek  
Figure 7.2: The flux network after the removal of 2-compound loops. 

 

7.4 Conserved Parts in Loops 

A first thought may be that there is no conserved common part for some loops, 

especially as the loops become longer. However, to our surprise, all loops with number 

of compounds up to six have conserved parts. A total number of 130 conserved parts or 

‘carriers’ are found and are shown below along with their frequencies and possible 

corresponding compound names (Table 7.11). The frequency of a conserved part is 

simply the number of loops it belongs to. 
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Conserved part (130) frequency Compound with the same chemical 
formula (71) 

H4N 97 Ammonium 
C3H2O3 66  
C4H2O4 39 Fumarate 
C3H3O3 38 Pyruvate 
H4 35  
C3H5O6P 32 Glyceraldehyde 3-phosphate 
C2H5NO2 32 Glycine 
C4H2O5 29 Oxaloacetate 
C2H3O2 29 Acetate 
H3 21  
C11H21N2O7PRS 20 acyl carrier protein 
C5H4O3 17  
C3H3O2 16  
C5H4O4 14 Itaconate 
C4H4O5 13 L-Malate 
C19H20N7O6 12 7,8-Dihydrofolate 
C4H4O4 11 Succinate 
C2HO3 11  
C5H8NO3 9  
C3H2O5 9  
C5H4O5 8 2-Oxoglutarate 
C4H6NO3 8  
CH5N 6  
C6H10O5 6 Mannan 
C3H2O2 6  
C2H5NO 6  
C2H3O 6  
C4H9NO2S 5 L-Homocysteine 
C3H5O3 5 L-Lactate 
C19H22N7O6 5 5,6,7,8-Tetrahydrofolate 
C6H11O6 4  
C5H8NO4 4 L-Glutamate 
C4H6NO4 4 L-Aspartate 
C4H4O3 4  
C4H2O3 4  
C3H7NO3 4 L-Serine 
C14H27O2 4 tetradecanoate (n-C14:0) 
H2 3  
H 3 H+ 
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C9H7O3 3 Phenylpyruvate 
C8H15NOS2 3 Lipoamide 
C7H15NO3 3 L-Carnitine 
C6H5O7 3 Isocitrate 
C6H11O9P 3 D-Tagatose 6-phosphate 
C5H9O8P 3 D-Xylulose 5-phosphate 
C5H9O5 3  
C5H9O4 3 (R)-2,3-Dihydroxy-3-methylbutanoate 
C5H8NO2 3  
C5H4N4 3  
C4H9NO2 3 4-Aminobutanoate 
C4H7O7P 3 D-Erythrose 4-phosphate 
C3H2O4 3  
C2H2O2 3  
C14H20N6O5 3  
C10H16N3O6S 3 Reduced glutathione 
CHO2 2  
C9H17NO4 2 O-Acetylcarnitine 
C9H11N2O7P 2  
C6H10O9P 2  
C5H8O6 2  
C5H5N5O 2 Guanine 
C4H6NO2 2  
C3H6NO2 2  
C3H5O2 2  
C3540H6544O800P100 2 Phosphatidate 
C2H4O2 2 Glycolaldehyde 
C20H20N7O6 2 5,10-Methenyltetrahydrofolate 
C16H31O2 2 Hexadecanoate (n-C16:0) 
C14H20N6O5S 2 S-Adenosyl-L-homocysteine 
X 1 Oxidized thioredoxin 
S2X 1 Lipoylprotein 
HO 1 hydroxide ion 
CH2NO3 1  
C9H16N4O6 1 4-(1-D-Ribitylamino)-5-aminouracil 
C9H11N2O8P 1 dUMP 
C9H11N2O5 1  
C9H11N2O4 1  
C8H8NO3 1  
C8H8NO2 1  
C8H12N2O2 1  
C7H9NO3 1  
C7H5O3 1 4-Hydroxybenzoate 
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C7H10O5 1 3-Carboxy-3-hydroxy-4-methylpentanoate
C6H9O9P 1 6-phospho-D-glucono-1,5-lactone 
C6H9O4 1 2-Dehydropantoate 
C6H8NOS 1  
C6H8N3O 1  
C6H12O6 1 L-Sorbose 
C6H11O8P 1  
C5H9O3 1  
C5H8O5 1 D-Arabinono-1,4-lactone 
C5H7O3 1 3-Methyl-2-oxobutanoate 
C5H6NO3 1 L-1-Pyrroline-3-hydroxy-5-carboxylate 
C5H5N5 1 Adenine 
C5H5N2O4 1 (S)-Dihydroorotate 
C5H4O2 1  
C5H4N4O2 1 Xanthine 
C5H4N4O 1 Hypoxanthine 
C5H4 1  
C5H3N2O4 1 Orotate 
C5H13N2O2 1 Ornithine 
C5H11NO2S 1 L-Methionine 
C4H8O2 1  
C4H8NO2  
C4H5O3 1 Succinic semialdehyde 
C4H4O2 1  
C42FeH52N8O6S2 1  
C4140H7544O1300P100 1  
C3H7O3 1  
C3H7NO2S 1 L-Cysteine 
C3H4O2 1 Methylglyoxal 
C3H2O6P 1 Phosphoenolpyruvate 
C3740H7144N100O800P100 1  
C30H49O3 1  
C2H5O2 1  
C18H39NO3 1  
C18H39NO2 1  
C16H29O2 1 hexadecenoate (n-C16:1) 

1 

Table 7.11: The conserved parts in loops. 

Notably, many (more than half) of the conserved parts have the same chemical formula as natural 

metabolites.  
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Chapter 8 

Summary and Prospects 

In this thesis we tackle the problem of yeast metabolism from several directions. 

We have confirmed the scale free and modular properties of the metabolic network and 

focused our effort on dissecting the network complexity from its functional perspective. 

We have discovered an important network motif, the internal compound and reaction 

loops, of which the 2-compound loop is the most evident and possibly crucial in flux 

coupling. Removal of these 2-compound loops greatly reduces the network complexity. 

This observation made by us serves an important step for simplifying the network flow. 

We also probe the network activation by mapping the genome-scale expression data 

onto the metabolic network. The simulations of the in silico cell under different growth 

conditions generate rich information, which allows for a quantitative assessment of the 

optimality of the network’s functionality. A key finding in this regard is the near 

optimal solution constructed using superposition of single-compound synthetic fluxes.  

We will continue our effort to elucidate the roles played by reaction loops in 

defining the flux patterns generated by in silico cell simulations. After this work is 

completed, we plan to integrate other genome-scale data, such as the transcriptional 

regulation network, protein abundance data, metabolite concentration data to construct 

a more complete picture of yeast metabolism, and to build quantitative and dynamic 

models, for this important and fundamental cellular process.
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Appendix 1 – The function distribution of yeast proteins (CYGD: 

http://mips.gsf.de/genre/proj/yeast/ ).

Function Number of ORFs 
METABOLISM 1488 
ENERGY 363 
CELL CYCLE AND DNA PROCESSING 995 
TRANSCRIPTION 1061 
PROTEIN SYNTHESIS 473 
PROTEIN FATE (folding, modification, 
destination) 

1130 

PROTEIN WITH BINDING FUNCTION 
OR COFACTOR REQUIREMENT 
(structural or catalytic) 

1019 

PROTEIN ACTIVITY REGULATION 237 
CELLULAR TRANSPORT, TRANSPORT 
FACILITATION AND TRANSPORT 
ROUTES 

1028 

CELLULAR 
COMMUNICATION/SIGNAL 
TRANSDUCTION MECHANISM 

233 

CELL RESCUE, DEFENSE AND 
VIRULENCE 

552 

INTERACTION WITH THE CELLULAR 
ENVIRONMENT 

457 

INTERACTION WITH THE 
ENVIRONMENT (Systemic) 

8 

TRANSPOSABLE ELEMENTS, VIRAL 
AND PLASMID PROTEINS 

123 

CELL FATE 268 
DEVELOPMENT (Systemic) 70 
BIOGENESIS OF CELLULAR 
COMPONENTS 

844 

CELL TYPE DIFFERENTIATION 448 
UNCLASSIFIED PROTEINS 2054 
Total (average number of functions per 
ORF) 

12851 (12851/6756 = 1.9022) 
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Appendix 2 – The location distribution of yeast proteins (CYGD: 

http://mips.gsf.de/genre/proj/yeast/). 

Location Number of ORFs 
extracellular 52 
bud 120 
cell wall 37 
cell periphery 190 
plasma membrane 165 
integral membrane / endomembranes (if not assigned 
to a specific membrane) 

175 

cytoplasm 2785 
cytoskeleton 176 
ER 529 
golgi 117 
transport vesicles 130 
nucleus 2055 
mitochondria 1013 
peroxisome 49 
endosome 51 
vacuole 257 
microsomes 5 
lipid particles 24 
punctate composite 135 
ambiguous 220 
Total (average number of locations per ORF) 8285 (8285/5200 = 1.5933) 
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Appendix 3 – The biochemical pathways of yeast (KEGG: 

http://www.genome.jp/kegg/). 

Pathway Number of 
ORFs 

Purine metabolism 90 
Starch and sucrose metabolism 71 
Pyrimidine metabolism 71 
Oxidative phosphorylation 62 
Glycerolipid metabolism 52 
Glycolysis / Gluconeogenesis 47 
Glycine, serine and threonine metabolism 43 
Benzoate degradation via CoA ligation 41 
Aminoacyl-tRNA biosynthesis 37 
Pyruvate metabolism 34 
Nicotinate and nicotinamide metabolism 33 
Galactose metabolism 32 
Inositol phosphate metabolism 31 
Fructose and mannose metabolism 31 
Butanoate metabolism 30 
N-Glycan biosynthesis 30 
Citrate cycle (TCA cycle) 30 
Lysine degradation 29 
Alanine and aspartate metabolism 27 
Glutamate metabolism 27 
Pentose phosphate pathway 27 
ATP synthesis 25 
Phenylalanine, tyrosine and tryptophan 
biosynthesis 

23 

Bile acid biosynthesis 23 
Arginine and proline metabolism 22 
Tyrosine metabolism 21 
Histidine metabolism 21 
Lysine biosynthesis 20 
Selenoamino acid metabolism 19 
Carbon fixation 18 
Glycosylphosphatidylinositol(GPI)-anchor 
biosynthesis 

18 

Aminosugars metabolism 18 
Tryptophan metabolism 18 
Glycosphingolipid metabolism 17 
Fatty acid metabolism 17 
Nitrogen metabolism 16 
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Folate biosynthesis 16 
Valine, leucine and isoleucine biosynthesis 16 
One carbon pool by folate 15 
Glyoxylate and dicarboxylate metabolism 15 
Nucleotide sugars metabolism 15 
High-mannose type N-glycan biosynthesis 15 
Urea cycle and metabolism of amino groups 15 
Methionine metabolism 14 
Riboflavin metabolism 13 
Ascorbate and aldarate metabolism 13 
Sulfur metabolism 12 
Porphyrin and chlorophyll metabolism 12 
Valine, leucine and isoleucine degradation 12 
Ubiquinone biosynthesis 12 
Biosynthesis of steroids 12 
Reductive carboxylate cycle (CO2 fixation) 11 
Propanoate metabolism 11 
Glutathione metabolism 11 
Cyanoamino acid metabolism 11 
Aminophosphonate metabolism 11 
Phenylalanine metabolism 11 
Limonene and pinene degradation 10 
Pantothenate and CoA biosynthesis 10 
Tetrachloroethene degradation 10 
Cysteine metabolism 10 
gamma-Hexachlorocyclohexane 
degradation 

9 

Alkaloid biosynthesis II 8 
beta-Alanine metabolism 8 
Biotin metabolism 7 
Methane metabolism 7 
Vitamin B6 metabolism 6 
Streptomycin biosynthesis 6 
Pentose and glucuronate interconversions 6 
Terpenoid biosynthesis 5 
Phospholipid degradation 5 
Androgen and estrogen metabolism 5 
Thiamine metabolism 4 
Nitrobenzene degradation 4 
Globoside metabolism 4 
Fatty acid biosynthesis (path 1) 4 
Ganglioside biosynthesis 3 
Blood group glycolipid 3 
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biosynthesis-neolactoseries 
O-Glycan biosynthesis 3 
Novobiocin biosynthesis 3 
Fatty acid biosynthesis (path 2) 3 
Styrene degradation 2 
1,4-Dichlorobenzene degradation 2 
Prostaglandin and leukotriene metabolism 2 
Taurine and hypotaurine metabolism 2 
Benzoate degradation via hydroxylation 2 
Synthesis and degradation of ketone bodies 2 
Peptidoglycan biosynthesis 1 
C21-Steroid hormone metabolism 1 
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Appendix 4 – The list of references to expression data. 

 

Gerber AP, et al. (2004) PLoS Biol 2(3):E79 Extensive Association of Functionally and 

Cytotopically Related mRNAs with Puf Family RNA-Binding Proteins in Yeast 

Hurowitz EH and Brown PO (2003) Genome Biol 5(1):R2 Genome-wide analysis of 

mRNA lengths in Saccharomyces cerevisiae 

Fernandes PM, et al. (2004) FEBS Lett 556(1-3):153-60 Genomic expression pattern in 

Saccharomyces cerevisiae cells in response to high hydrostatic pressure 

Shakoury-Elizeh M, et al. (2004). Mol Biol Cell 15(3):1233-43 Transcriptional 

Remodeling in Response to Iron Deprivation in Saccharomyces cerevisiae 

Shepard KA, et al. (2003) . Proc Natl Acad Sci U S A 100(20):11429-34 Widespread 

cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts 

using DNA microarray analysis 

Troyanskaya OG, et al. (2003). Proc Natl Acad Sci U S A 100, 8348-53 A Bayesian 

framework for combining heterogeneous data sources for gene function prediction (in 

Saccharomyces cerevisiae) 

Nagy PL, et al. (2003) Proc Natl Acad Sci U S A 100(11): 6364-6369 Genomewide 

demarcation of RNA polymerase II transcription units revealed by physical 

fractionation of chromatin 

Segal E, et al. (2003). Nat Genet 34(2):166-176 Module networks: identifying 

regulatory modules and their condition-specific regulators from gene expression data 

Arava Y, et al. (2003). Proc Natl Acad Sci U S A 100(7):3889-94 Genome-wide 

analysis of mRNA translation profiles in Saccharomyces cerevisiae 

Alter O, et al. (2003) Proc Natl Acad Sci USA 100(6):3351-3356 Generalized singular 

value decomposition for comparative analysis of genome-scale expression datasets of 

two different organisms 

Dunham MJ, et al. (2002) . Proc Natl Acad Sci USA 99:16144-9. Characteristic 

genome rearrangements in experimental evolution of Saccharomyces cerevisiae 

Yoshimoto H, et al. (2002). J Biol Chem 277(34):31079-31088 Genome-wide Analysis 

of Gene Expression Regulated by the Calcineurin/Crz1p Signaling Pathway in 
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Saccharomyces cerevisiae 

Wang Y, et al. (2002). Proc Natl Acad Sci U S A 99(9):5860-5 Precision and functional 

specificity in mRNA decay 

Rutherford JC, et al. (2001) Proc Natl Acad Sci U S A 98(25):14322-7 A second 

iron-regulatory system in yeast independent of Aft1p 

Protchenko O, et al. (2001) J Biol Chem 276(52):49244-50 Three cell wall 

mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae 

Gasch AP, et al. (2001).Mol Biol Cell 12(10):2987-3003 Genomic expression responses 

to dna-damaging agents and the regulatory role of the yeast atr homolog mec1p 

Keller G, et al. (2001) J Biol Chem 276(42):38697-702 Haa1, a protein homologous to 

the copper-regulated transcription factor Ace1, is a novel transcriptional activator 

Lieb JD, et al. (2001) Nat Genet 28(4):327-334 Promoter-specific binding of Rap1 

revealed by genome-wide maps of protein-DNA association 

Carmel-Harel O, et al. (2001) Mol Microbiol 39(3):595-605 Role of thioredoxin 

reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces 

cerevisiae 

Iyer VR, et al.(2001) Nature 409:533-38 Genomic binding sites of the yeast cell-cycle 

transcription factors SBF and MBF 

Kuhn KM, et al. (2001) Mol Cell Biol 21(3):916-27 Global and specific translational 

regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer 

from a fermentable to a nonfermentable carbon source 

Ogawa N et al.(2000) Mol Biol Cell 11:4309-21 New components of a system for 

phosphate accumulation and polyphosphatemetabolism in saccharomyces cerevisiae 

revealed by genomic expressionanalysis 

Gasch AP, et al. (2000) Mol Biol Cell 11(12):4241-57 Genomic expression programs in 

the response of yeast cells to environmental changes 

Alter O, et al. (2000). Proc Natl Acad Sci USA 97(18):10101-6 Singular value 

decomposition for genome-wide expression data processing and modeling 

Gross C, et al. (2000) J Biol Chem 275(41):32310-6 Identification of the copper 

regulon in Saccharomyces cerevisiae by DNA microarrays 
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Zhu G, et al. (2000) Nature 406(6791):90-4 Two yeast forkhead genes regulate the cell 

cycle and pseudohyphal growth 

Casagrande R, et al. (2000). Mol Cell 5 (4):729-35 Degradation of proteins from the 

ER of S. cerevisiae requires an intact unfolded protein response pathway 

Lyons TJ, et al. (2000) Proc Natl Acad Sci U S A 97(14):7957-62 Genome-wide 

characterization of the Zap1p zinc-responsive regulon in yeast 

Diehn M et al.(2000) Nat Genet 25:58-62 Large-scale identification of secreted and 

membrane-associated gene products using DNA microarrays 

Yun CW, et al. (2000) J Biol Chem 275(14):10709-15 Desferrioxamine-mediated iron 

uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake 

Sudarsanam P et al.(2000) Proc Natl Acad Sci U S A 97:3364-9 Whole-genome 

expression analysis of snf/swi mutants of Saccharomycescerevisiae 

Ferea TL, et al. (1999) Proc Natl Acad Sci U S A 96(17):9721-6 Systematic changes in 

gene expression patterns following adaptive evolution in yeast 

Spellman PT et al.(1998) Mol Biol Cell 9:3273-97 Comprehensive identification of cell 

cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray 

hybridization 

Chu S, et al. (1998) Science 282(5389):699-705 The transcriptional program of 

sporulation in budding yeast 

DeRisi JL, et al. (1997) Science 278(5338):680-6 Exploring the metabolic and genetic 

control of gene expression on a genomic scale
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Appendix 5 – Matlab code for loop enumeration. 
function [loops]=findloop(ajm,n_r,k) 

%FINDLOOP   find loops 

%   [LOOPS]=FINDLOOP(A,N_R,K) finds loops with length less than K for a 

%   network given its adjacent matrix. N_R is the number of reactions. All 

%   reaction indices are smaller than compound indices. 

% 

%   Tony 

%   03/07/2005 

 

t1=clock; 

 

n=length(ajm);%number of nodes 

n_c=n-n_r;%number of compounds 

 

loops=cell(k-1,1); 

for s_cpd=n_r+1:n%go through all compounds 

    fprintf(1,'%d\n',n-s_cpd); 

    paths_cpd=cell(k/2,1); 

    for depth=2:2:k%go through all possible loop depths 

        paths=[]; 

        %work only on the local network with maximal depth specified 

        idx=s_cpd; 

        for i=1:depth+1 

            [zi,zj]=find(ajm(idx,:)~=0); 

            idx_new=setdiff(zj,idx); 

            idx=[idx idx_new]; 

        end 

        if ~isempty(idx) 

            %eliminate dead ends and reactions with only substrates or 

            %products 

            rcts=idx(find(idx<=n_r)); 

            cpds=idx(find(idx>n_r)); 

 

            delta1=1; 

            while delta1>0 

                %remove nodes with zero or one connection 

                delta2=1; 

                while delta2>0 

                    idx_rm=idx(find(sum(abs(ajm(idx,idx)),1)<=1)); 

                    idx=setdiff(idx,idx_rm); 

                    delta2=length(idx_rm); 

                end 

                %remove reactions with either only substrates or products 
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                rcts=idx(find(idx<=n_r)); 

                cpds=idx(find(idx>n_r)); 

                rcts_rm=rcts(find(abs(sum(ajm(cpds,rcts),1))==sum(abs(ajm(cpds,rcts)),1))); 

                rcts=setdiff(rcts,rcts_rm); 

                delta1=length(rcts_rm); 

                idx=[rcts cpds]; 

            end 

            ajm_local=ajm(idx,idx); 

            paths=find(idx==s_cpd);%start with the s_cpd 

            if ~isempty(paths)&&length(cpds)*length(rcts)>0 

                paths=getpaths(ajm_local,paths,depth+1); 

            end 

            idx=idx(:); 

            if ~isempty(paths) 

                paths=idx(paths);%map back the indices of the original network 

            end 

        end 

        paths_cpd{depth/2}=paths; 

    end %end of for depth=2:2:k 

    %compare paths and identify loops 

    loops_cpd=cell(k-1,1); 

    %find loops with length 2*depth 

    for i=1:k/2 

        loop=[]; 

        path=paths_cpd{i}; 

        if ~isempty(path) 

            [zu,zf]=unique2(path(end,:)); 

            [ztf,zloc]=ismember(path(end,:),zu(find(zf==1))); 

            path(:,ztf)=[];%eliminate paths with unique end compounds 

            [n_d,n_p]=size(path); 

            for zi=1:n_p-1 

                for zj=zi+1:n_p 

                    if path(end,zi)==path(end,zj) 

                        if isempty(intersect(path(2:end-1,zi),path(2:end-1,zj))) 

                            zloop=[path(:,zi);flipud(path(2:end-1,zj))]; 

                            loop=[loop zloop]; 

                        end 

                    end 

                end 

            end 

        end  

        loops_cpd{2*i-1}=loop; 

    end 

    %find loops with length 2*depth-2 
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    for i=2:k/2 

        loop=[]; 

        path1=paths_cpd{i-1}; 

        path2=paths_cpd{i}; 

        if ~isempty(path1)&&~isempty(path2) 

            for zi=1:size(path1,2) 

                for zj=1:size(path2,2) 

                    if path1(end,zi)==path2(end,zj) 

                        if isempty(intersect(path1(2:end-1,zi),path2(2:end-1,zj))) 

                            zloop=[path1(:,zi);flipud(path2(2:end-1,zj))]; 

                            loop=[loop zloop]; 

                        end 

                    end 

                end 

            end 

        end 

        loops_cpd{i*2-2}=loop; 

    end 

     

    %add to loops 

    for i=1:k-1 

        loops{i}=[loops{i} loops_cpd{i}]; 

    end      

end 

%eliminate redundant loops 

for i=1:k-1 

    loops_k=loops{i}; 

    if ~isempty(loops_k) 

        sorted_loops=sort(loops_k,1); 

        [zu_loops,zf,idx]=unique2(sorted_loops','rows'); 

        loops_k=loops_k(:,idx); 

    end 

    loops{i}=loops_k; 

end 

 

e=etime(clock,t1); 

fprintf(1,'elapsed time: %d mins %d seconds\n',floor(e/60),mod(e,60)); 

 

%recursive algorithm to find all the possible paths starting from a given 

%compound, with specified depth. 

function [paths]=getpaths(ajm,paths,depth) 

[nr,nc]=size(paths); 

if nr>depth 

    error('path length exceeds the maximal depth'); 
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end 

if nr==depth||nr==0 

    paths=paths; 

else 

    zpaths=[]; 

    for i=1:size(paths,2) 

        cpd=paths(end,i); 

        rcts=find(ajm(cpd,:)~=0); 

        rcts=setdiff(rcts,paths(:,i));%eliminate the paths that form smaller loops 

        for j=1:length(rcts) 

            rct=rcts(j); 

            cpds_next=find(ajm(:,rct)==-ajm(cpd,rct)); 

            cpds_next=setdiff(cpds_next,paths(:,i));%eliminate the paths that form smaller loops 

            if ~isempty(cpds_next) 

                zt=[repmat(paths(:,i),1,length(cpds_next));repmat(rct,1,length(cpds_next));cpds_next']; 

                zpaths=[zpaths zt]; 

            end 

        end 

    end 

    paths=zpaths; 

    paths=getpaths(ajm,paths,depth); 

end  
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